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This is a non-interactive version of the first edition of 
the interactive book, Biological Bits for Apple 
iBooks. It has been prepared especially for readers 
without access to interactive book-reading software 
but lacks the movies and interactive software of the 
iBook. All text and images from the iBook have been 
included here, but page numbers may vary between 
the two versions.

Undergraduate students and educators.

This text can act as preliminary reading for students undertak-
ing semester-long undergraduate courses or projects. I hope 
the educator might select relevant chapters for students to 
read prior to lectures or tutorials. The material can serve to 
prompt students to begin thinking about Artificial Life and ex-
plore software based on its principles. Coupled with quiz or 
discussion questions targeted at the educator’s needs, I hope 
it serves as a useful way to begin to “flip” the classroom.

Postgraduate students and supervisors.

My aim is to provide a broad, engaging text covering the main 
activities of Artificial Life. I consciously refer to historical 
work and to what I personally feel to be exciting areas for new 
research. I feel that the risk of approaching Artificial Life nar-

rowly is real and the result will be an unhealthy compartmen-
talisation that other disciplines struggle to break. Let’s not go 
there! Some level of exposure across the range of approaches 
to creating Artificial Life is, I think, likely to be of considerable 
benefit. If nothing else, an understanding of the material in 
this text can make attendance at conferences, workshops and 
symposia on Artificial Life much more rewarding.

Please send me an email to let me know if you use the book in 
your own research or teaching, or if you have any thoughts on 
how to improve this work in progress.
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In its broadest sense, Artificial Life encompasses the creation 
of imaginary beings and the engineering of life-like artefacts. 
The artefacts often take the form of fine technology and may 
act as proxies for nature, allowing us to study or engage with 
biology through models. With such a wide scope, clearly the 
practice is interdisciplinary. Besides the biological sciences, 
anyone who wishes to understand Artificial Life thoroughly 
would benefit from an investigation of art, technology, social 
science and the theories, history and philosophy of these 

fields. But life is short. In 
reality, everybody comes 
to the discipline with 
their own predispositions 
and interests. The inquisi-
tive will find so much 
here that there is little 
chance of escape. Artifi-
cial Life arguably ad-
dresses the most demand-
ing, challenging, and pro-
found questions that have 
ever been asked. How did 
life get here; what is it; 
and where might it go? By 
extension, these questions 

reference us. Artificial Life encompasses our deep history, our 
present and our future.

Generally, Artificial Life might be thought of as the abstrac-
tion and interpretation of natural biological phenomena in ar-
tificial media. But a higher-level perspective is also revealing. 
We could say that the medium of Artificial Life is “representa-
tion”, itself an abstract, intangible concept. Artificial Life’s rep-
resentations may take on forms as diverse as speculative 
thoughts conveyed in theoretical and philosophical texts, 
through fiction, the visual and sonic arts, or as physical ma-
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Introduction

Are we puppets tugged this way and that in our thoughts and behav-
iour by threads of gold when we are moral or enlightened, and by 
baser cords when we are crude, decadent or foolish? Are we the pup-
pets of the gods?

We are clockwork figures, our springs 
wound for a short time. We are distin-
guished from beasts only by our god-
given immortal souls that grant us the 
faculty of Reason.



chinery and implemented soft-
ware. They may even be assem-
bled using nature’s own biotic 
building blocks. But implicit 
in every artificial life form lies 
a theory of what life is. As 
these theories have metamor-
phosed, diverged and fused 
over the centuries, what was 
once a system provoking diffi-
cult questions concerning the 
nature of life may become an 
oddity in a museum, or spare 
parts for the next venture. 
Sometimes, a generation of Ar-
tificial Life’s engineers dismiss 
the work of their predecessors as misguided, quaint, or based 
on a simplistic theory of life. For instance, we no longer think 

that humans are 
clockwork machines 
with a soul, neither 
do we believe that 
our brains are digital 
computers. But these 
views, and countless 
others we might be 
tempted to scoff at, 
have concerned some 
of the greatest think-

ers of our past. Many of them remain valuable contributions 
in their own right, flavouring current interpretations of living 
systems, our language, and our conventions incontrovertibly. 
Some views are especially precious for the window into his-
tory they provide. Hence, when we examine the bits and bytes 
of computational Artificial Life, it pays to be mindful of two 
points: that, in time, current theories are as likely to be super-
seded as the ideas preceding them; and that even concepts spe-
cific to digital artificial life emerge from patterns generated in 
other media. The concept of life is quick.

A.D. 
Melbourne, 2014

Hashtag #biolbits on Twitter

General introductory reading

Langton, C. G., Ed. (1995). “Artificial Life, An Overview”. Cam-
bridge Massachusetts / London England, MIT Press.

Levy, S. (1992). "Artificial Life, the quest for a new creation". 
London, Penguin Books.

Riskin, J., Ed. (2007). “Genesis Redux, Essays in the History 
and Philosophy of Artificial Life”. Chicago/London, University 
of Chicago Press.
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Do we have only an illusion of 
free-will? Is our life determined 
by Fate and the whims of gods 
and monsters?

We are the pinnacle of a god’s creation, 
the goal towards which evolution has 
been striving.

https://twitter.com/
https://twitter.com/
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A note on references and images

I have provided many references for further reading. In some 
cases I have elected to suggest general information, survey ar-
ticles, or recent papers that cover obscure or less accessible 
earlier work. At other times I felt it was more helpful or impor-
tant to refer to original texts, however historical they might 
be. In either case, my hope is that the selected references are 
informative. A quick web-search (e.g. google scholar) should 
turn most of them up.

All images in this book are copyright the author, out of copy-
right, in the public domain, included here for critique, aca-
demic or educational purposes, or have been included with 
the permission of the copyright holders. If you feel I have 
breached your copyright in some way, please let me know so 
that I can rectify the situation. Please do not reproduce im-
ages or parts of this ebook without the written consent of the 
author.
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CHAPTER 1

Technological  
history

Artificial Life is a discipline that 
studies biological processes by 

producing and exploring the 
properties of models. Many recent 

Artificial Life models are computer 
simulations, but Artificial Life is 

arguably better understood from a 
broader perspective; it is the invention 

and study of technological life.



TOPICS

1. Emergence and synthesis

2. Artificial life and intelligence

3. What is life?

SECTION 1

What is Artificial Life?

molecules organelles cells organisms ecosystemsatoms

If we carefully construct low level 
building blocks analogous to atoms...

How can we use technology to build living systems? This 
question has challenged the creativity of humans for millen-
nia. Lately, attempts to answer it have employed computer 
technology, but this is just the latest trend in a long line of en-
gineering practice that stretches back beyond antiquity. Each 
attempt has used the technological methods of its era, and 
each is woven with thread into the tangle of philosophical per-
spectives that have allowed artificial life’s inventors to see 
their devices as lifelike. In this section we will discuss a couple 
of themes that underly today’s Artificial Life, synthesis and 
emergence, and see how they relate to the ideas of Artificial 
Intelligence and the nature of life.

10
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... the emergent interactions of these can set in motion the 
synthesis of more and more complex dynamic structures.



Emergence and synthesis

Local interactions between simple elements are said to facili-
tate the emergence of complex structures and behaviours at 
the level of the elements’ collection. A commonly cited exam-
ple of emergence in Artificial Life is that of a flock of birds or 
school of fish. No individual starling (for example) in a flock 
keeps track of what all the others are doing. There is no orches-
tration or management from above. Each bird only examines 
its neighbours’ behaviour and makes a decision about what to 
do next based on the limited information available to it. The 
result is, nevertheless, a large, coherent entity – a flock.

The synthesis of complex behaviour in 
this way is one goal of current Artificial 
Life research. The behaviour is gener-
ated from the “bottom up” in the sense 
that it lacks an overseer who keeps track 
of the big picture. The individual, and 
often relatively simple components of 
the emergent entity, are responsible for 
its construction. There is no central con-
troller or manager.

A wander through a forest, or a dive into a coral reef, reveals 
just how complex and diverse nature’s bottom up structures 
can be. Astonishingly, this complexity is built by self-assembly 
and self-organisation of physical and chemical building blocks 
into intricate, dynamic hierarchies. There is no plan, and 
there doesn’t need to be one.

Since the creation of the universe sub-atomic particles have 
assembled themselves into atoms of different types. The at-
oms self-assemble into molecules, including among them, 
those essential to life, for instance water. Molecules have prop-
erties and exhibit behaviours that are not a characteristic of 
their atomic components. These properties and behaviours 
are themselves emergent. For instance, liquid water’s excel-
lent action as a solvent is emergent from the interactions of its 
Hydrogen and Oxygen atoms at 1 (Earth) atmosphere and 20 
degrees Celsius.

At some stage in Earth’s history, basic molecules appear to 
have given rise to at least one system capable of self-

replication. There are numerous theo-
ries about how this might have hap-
pened, but the detail of the transition 
from a “soup” of chemicals to the first 
populations of replicating molecules re-
mains a mystery. Still, from here, the 
process of evolution was initiated, first 
with single cells. Then cells evolved suffi-
cient inter-dependence that communi-
ties emerged. Some of these became so 

tightly knit they became multicellular organisms encapsulated 
by a single membrane. Many varieties of organism co-operate 
in the synthesis of marine and terrestrial ecosystems. These 
are emergent communities of many species, their abiotic envi-
ronments, and the interactions between all of these compo-
nents. As well as occupying niches within the different habi-
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The concept of emergence is itself subject to 
philosophical discussion. Is emergence relative to 
the perspective of the observer? Is there such a 
thing as “true” emergence whereby an outcome of 
the interaction of elements cannot, in principle, be 
predicted from a description of the parts and their 
relationships? How does emergence relate to the 
concept of supervenience, a term with very similar 
applications?



tats generated by abiotic physical and chemical processes – 
such as erosion, precipitation, ocean tides, geothermal activ-
ity, sunlight and shadow – organisms construct their own 
habitats via niche construction. Their environments are as 
much a side-effect of life’s existence as they are of forces exter-
nal to organisms.

This level-building process is what is meant by the synthesis 
of complexity through emergence. These themes are typical of 
much of the research done in Artificial Life today. How can we 
get our technology to mimic or reproduce this behaviour? 
Well, that is an open problem! Many approaches have been 
tried, each adopts a different kind of basic building block and 
attempts to show how it can be used to construct something 
more complex than simply the “sum of its parts”.

Artificial life and intelligence

The concept of intelligence is at least as slippery as life, per-
haps more so. The longterm goal of Artificial Intelligence (AI) 
is to build human-level intelligence and 
one day move beyond it. On the way to 
this grand challenge a number of lesser 
but still exceedingly tricky sub-goals 
must first be reached. AI involves build-
ing machines that solve problems requir-
ing intelligence. Playing chess, devising 
original mathematical proofs, writing po-
etry, learning to recognise a Coke can 
left on a desk, navigating a maze, con-

ducting a conversation with a human... these have all been, at 
one time or another, suitable candidates for study. The kinds 
of subproblems AI investigates are concerned with reasoning, 
knowledge acquisition (learning), its storage or representation 
and its application. Planning, language use and communica-
tion, navigation, object manipulation and game play also fall 
within AI’s scope. 

The traditional approach to realising artificial intelligence is 
sometimes (facetiously?) dubbed GOFAI, good old fashioned 
AI. GOFAI typically tackles problems from the “top down” by 
setting a goal and subdividing it into sub-goals. These are re-
peatedly subdivided into sub-sub-goals, until the achievement 
of the sub-...-sub-goals is trivial and can be executed by a sim-
ple machine or program. Together, the achievement of the 
sub-goals by the machine results in the solution of the initial 
big problem. For instance, suppose the big goal is to construct 
a Lego™ dollhouse. The problem can be solved by sub-
division into the need to build a roof, rooms and their con-

tents. The contents include wall fix-
tures, furnishings and a fireplace. The 
fireplace might be subdivided into a 
hearth, mantelpiece, firebox, grate, 
chimney and chimney pots. And so on. 
The building tasks get simpler and sim-
pler as the subdivision continues. A simi-
lar subdivision of goals might allow a ro-
bot to construct a plan in order to travel 
to the far side of a room. The bottom 
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GOFAI is usually “symbolic” in the sense that it 
involves machine manipulation of symbols 
according to explicit rules. GOFAI does not 
encompass all AI research. For instance non-
symbolic AI, itself dating back well over half a 
century, uses artificial neural networks, “fuzzy 
logic” or cybernetic systems to make decisions 
about how a machine should respond to its 
environment. These latter approaches overlap with 
methods frequently employed in Artificial Life.



level of the subdivision must be simple commands to the ro-
bot’s locomotory system such as, “turn on the left-front motor 
at half-speed for one second”.

This reductive approach is often contrasted against that of Ar-
tificial Life’s preference for bottom up synthesis.

One popular activity within contemporary and historical Artifi-
cial Life is to (try to) build technological systems that rival the 
diversity and complexity of individual organism behaviour. 
For obvious reasons, even if attempted from the bottom up, 
this research agenda sometimes overlaps with AI’s. It is cer-
tainly possible to synthesise the equivalent of instinctive crea-
ture gaits and reflexes from the bottom up without recourse to 
the intelligence of a robot or other artificial agent. But as soon 
as the engineered creature is expected to use its gait or re-
spond in a non-reflexive way to environmental stimulus, the 
project relates to AI’s activities. An Artificial Life purist might 
argue that most creatures respond to their environment in a 
very reflexive way, taking into account only local conditions 
and the organism’s current internal state. As it bumbles 
around a complex environment, an organism’s interactions 
naturally appear complex, even though its behavioural ma-
chinery is actually quite simple. Such a researcher might forgo 
any interest in route (or other) planning and goal setting, hall-
marks of GOFAI probably not practiced by ants and cock-
roaches. If the animal under consideration is a primate it is ap-
parent that, under some circumstances at least, a degree of 
planning and goal setting is necessary to effectively model its 
behaviour.

AI research can be considered a subset of Artificial Life, albeit 
one that many Artificial Life researchers are tempted to skirt 
around. As far as we know, intelligence only occurs in living 
systems. That is how it has appeared on Earth anyway. Per-
haps one day intelligence might exist independently of life, 
but I would hazard a guess that this will only be when we, or 
some other living intelligence, engineer it so. It would be very 
surprising indeed to find a natural intelligent system that was 
not also alive.

What is life?

The field of Artificial Life is itself emergent from the interac-
tions of its researchers. Hence, there is no leading figure dic-
tating to all Artificial Life researchers that they consider the 
question, What is life? Many in the field are not at all con-
cerned about this issue. To an outsider or newcomer it might 
seem very surprising that only a few (professional and ama-
teur) philosophers in the field care! But even biologists and 
ecologists can make a living without having a thorough under-
standing of the philosophy underpinning the subject of their 
attention. All the same, many libraries of text produced by the 
greatest minds in history have addressed the subject. Person-
ally I consider an understanding of this question to be para-
mount to Artificial Life research, to Biology, to Ecology and 
even to humanity. It is arguably one of the most fundamental 
concerns of any conscious life form. Well, it should be. And I 
count thinkers from Aristotle to Schrödinger among those in 
agreement. Regardless of its importance, What is life?, is an 
enticing challenge.
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Definitions of life usually fall into a few distinct categories 
based on what organisms have, what they do, what they are 
made of, how they are made, and what they are a part of. That 
is, most (but not all) definitions are based on the properties of 
organisms, or on the relationships they have with other 
things.

Properties of organisms. Simple and obvious properties 
organisms have that might allow them to be distinguished 
from non-life include eyes, limbs, hearts and, some have ar-
gued, souls. Aristotle himself was an early proponent of souls. 
But he didn’t have in mind the kind of soul that Christians 
later adopted. Aristotle’s concept of the soul (psyche / Ψυχή) 
came in five flavours. Most basic of all is the nutritive and gen-
erative soul possessed by plants and all living things. Next, the 
sentient soul and the appetitive soul are common to all animal 

life. Some ani-
mals also have lo-
comotive soul 
that enables them 
to move. Last of 
the five, human-
kind alone has ra-
tional soul. Aris-
totle believed that 
the types of soul 
and their associ-
ated vital heat 
were distributed 

around the body as “pneuma”-infused blood. This isn’t simply 
air-infused blood, the reference here is to a “philosophical” 
substance that drives life.

Aristotle had understood that organisms ate and grew. Some 
could perceive their environment and had drives and goals. 
Some could move and, humans at least, could reason. About 
these things he was correct! He didn’t yet possess sufficient 
knowledge to understand how these phenomena were gener-
ated, but he under-
stood more than most 
of his contemporaries.

Most improvement in 
our understanding of 
life has come about 
since the 16th century. 
Why did it take so 
long? From around 
200 CE the ideas of a 
Roman physician, sur-
geon and philosopher, 
Galen of Pergamon, 
dominated Western 
medicine and our un-
derstanding of life. Ga-
len’s ideas drew heav-
ily from those of the 
legendary 5th C BCE 
Greek physician Hip-
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The illustration by 17th century micro-
scopist Robert Hooke of the cells he dis-
covered in cork.

Hooke, R. (1655). "Micrographia or 
Some physiological descriptions of min-
ute bodies made by magnifying glasses 
with observations and inquiries there-
upon", London, p.112. Image out of 
copyright.

Part of William Harvey’s evidence demon-
strating the circulation of the blood could be 
observed by anybody in 1628 by applying 
slight pressure to a vein in their arm. Image 
out of copyright.



pocrates, as well as Plato and 
Aristotle. Galen’s concept of 
the soul was close to Plato’s. 
It had three parts: vital spirit 
for heat and life, desire for nu-
trition, reproduction and 
growth, and wisdom for feel-
ings and thoughts. Like Aris-
totle, Galen thought the stuff 
was distributed around the 
body in the blood. The idea 
that blood (and presumably 
pneuma with it) might circu-
late within the body, and not 
be consumed by it, had not 
yet entered Western medi-
cine. In 1628 English physi-

cian William Harvey convincingly argued circulation was cor-
rect, but nobody even in this time understood how the blood’s 
circulation generated the observed behaviours of living things. 
In the 1650s for instance the French philosopher Descartes 
was convinced that all animals were dumb clockwork ma-
chines. Humans, special in the eyes of his Christian god, were 
granted an immortal soul that gave them superiority over 
mere beasts and the faculty of reason.

Cells. Today there are still workable definitions of life made 
by listing its properties. These aren’t very different from Aris-
totle’s, although usually souls are now set aside. But some ma-

jor scientific discoveries have facilitated new approaches. For 
instance, his early microscopes allowed 17th C. Englishman, 
Robert Hooke, to discover the presence of cells, tiny room-like 
spaces, in cork. Dutch microscopist Antoni van Leeuwenhoek 
discovered microorganisms that were, in their entirety, single 
cells. The Dutchman was the first person to observe bacteria. 
Discoveries like these paved the way for the “cellular defini-
tion of life” – anything built of cells is an organism. But what 
then of a “dead” cell? How did it differ from one that was, by 
its movement for instance, apparently living? Even a deceased 
cat is built of cells.

Evolution. Since Charles Darwin and Alfred Russel Wallace 
published their theories of evolution in the 19th century, it has 
been suggested we might define life by reference to heritabil-
ity and lineage: an organism is an entity with the potential to 
form a link in an evolutionary chain. That is, it was born of 
parents from which it inherited properties, and it has the po-
tential to give birth to offspring to continue the inheritance 
chain. This rules out creatures born sterile – there still seems 
to be life in a mule, despite its infertility and legendary unwill-
ingness to move. Like many definitions, the evolutionary ap-
proach is useful as a guide, but exceptions exist.

Genes and information. During the 19th century, the con-
cept of the gene was introduced by Gregor Mendel, famous for 
breeding pea plants and documenting the inheritance of traits 
across generations. Early in the 20th century came the discov-
ery by Sutton and Boveri that chromosomes were the means 
by which this inheritance was conducted. During the first half 
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Antoni van Leeuwenhoek’s illus-
tration of sperm seen through 
the microscope. 1-4 are human 
sperm, 5-8 are dogs’. Van Leeu-
wenhoek was amazed at the 
complexity of life at such a tiny 
scale. He was the first to ob-
serve the countless microorgan-
isms living out their entire lives 
in a drop of water. Image out of 
copyright.



of the 20th century it gradually became clear that DNA was 
the molecule of heredity. Its structure, the famous double-
helix, was first published in 1953 by Francis Crick and James 
Watson. As part of their evidence they had used an X-ray dif-
fraction image taken by Rosalind Franklin and Raymond Gos-
ling the year before. This important image was used without 
the photographers’ permission or knowledge in what has 
come to be one of the most famous scandals of modern sci-
ence.

The decades of detective work into the mechanisms of inheri-
tance permitted a new definition of life: an organism is a self-
reproducing machine that stores its blueprint in a DNA mole-
cule. Unfortunately this suffers from problems like those we 
have already encountered. Still, for a computer scientist this 
definition is particularly interesting as it opens the way to un-
derstanding life in terms of information storage and utilisa-
tion within an organism, and its transfer along evolutionary 
lineages. “Information”, in a technical sense, is very much a 
concern of theoretical and practical computer science. In the 
1940s and 50s, when computer science was taking its first 
steps under people like Alan Turing and John von Neumann, 
the possibility of viewing organisms as biological information 
processing machines, and of realising organisms through com-
putation, was also taking shape. These ideas are still relevant 
in assessing the complexity of organisms and trying to under-
stand the sense in which evolution might be driving increases 
in organismic complexity.

I have saved what I believe to be the most satisfactory ap-
proach to defining life until last.

Autopoiesis. An organism is a self-constructing, self-
organising, self-bounding chemical machine defined as a set 
of processes of transformation and destruction of compo-
nents. It exchanges material and energy with its environment 
(i.e. it is an open system) to maintain its internal relations and 
its existence as a physical machine. This explanation is 
roughly based on that offered in 1972 by Chilean biologists 
Humberto Maturana and Francisco Varela. They coined the 
term autopoiesis to capture their definition in a word – an or-
ganism is self (auto) - made (poiesis).

The special thing about Maturana and Varela’s idea is that the 
organism is defined as a set of relationships between its proc-
esses, not its static components. These processes involve the 
chemical transformation and destruction of molecules, and 
they are responsible for maintaining themselves, and for giv-
ing physical form to the organism from within.

Can an entity that meets Maturana and Varela’s definition be 
realised in software? No, as it would not be a chemical ma-
chine, whatever other properties it had. But the possibility of 
building non-chemical autopoietic machines in digital media 
remains interesting to many and has the potential to inform 
us about the behaviour of life. Several researchers have at-
tempted this by building “Artificial Chemistries” designed to 
support virtual autopoiesis. The catch is that the complexity of 
any real organism’s network of processes is mind-boggling. 

16



Only very simple metabolisms can currently be simulated in 
their entirety.

As noted earlier, there is so much that could be said about the 
history of attempts to answer the question, What is life?, that 
it could fill a library. Instead of writing one, since the concern 
of this book is specifically to explore Artificial Life’s concrete 
forms, we will next describe some historical examples of the 
machines built to poke, prod, stretch, tear and crush theories 
of life. Argument about definitions is challenging and helps to 
clarify our thoughts, but if we could meet the challenge to 
build a machine that lived, that too would say something 
about our concept life.

Further reading

Maturana, H. R. and F. J. Varela (1972). "Autopoiesis and Cog-
nition: The Realization of the Living". Dordrecht, Holland, D. 
Reidel Publishing Co.

McMullin, B. and F. J. Varela (1997). Rediscovering Computa-
tional Autopoiesis. Fourth European Conference on Artificial 
Life, MIT Press: 38-47.

Morange, M. (2008). "Life explained". New Haven / Paris, 
Yale University Press / Éditions Odile Jacob.

Russell, S. J. and P. Norvig (2010). "Artificial Intelligence, A 
Modern Approach", Prentice Hall, Chapter 1.

Schrödinger, E. (1944). "What is Life? The physical aspect of 
the living cell". Cambridge, United Kingdom, Cambridge Uni-
versity Press.
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KEY ARCHAEOLOGICAL FINDS

1. The Makapansgat cobble (South Africa)  
2.8M years BP

2. The Venus of Tan Tan (Morocco) 
300-500k years BP

3. The Venus of Berekshat Ram (Golan Heights)  
250-280 years BP

4. Chauvet cave paintings (France)  
30k years BP

5. Lascaux cave paintings (France)  
15k years BP 

SECTION 2

Stone, bone, clay 
and pigment

There is little point in speculating how, or even if, our earliest 
hominid ancestors thought about distinctions between living 
things and non-living things. We will probably never know. 
However we do know, through archaeological evidence, that 
entities we now consider to be among a class we label “living” 
were singled out for special attention even by our very earliest 
ancestors. The technology they employed was aimed specifi-
cally at mimicking life’s appearance, i.e., the earliest artificial 
life forms appeal primarily to our visual sense.

The Makapansgat cobble is a face-shaped jasperite stone. 
This is currently the oldest lifelike (but essentially inanimate) 
object we have uncovered for which there is proof of its inter-
est to early hominids. The cobble appears to have been col-
lected by Australopithecus or a similarly ancient hominid, 
about 2.8 million years ago, presumably for its shape. The 
stone’s resemblance to a hominid face is however, a natural 
fluke, it does not appear to have been altered manually. The 
Makapansgat cobble isn’t therefore an early attempt to repre-
sent living things, but it is some evidence that its collector rec-
ognised the features of a hominid face in an unusual context, 
and found them interesting enough to collect.

Two very early “venus” figurines, small stones of roughly homi-
nid form, have been found that count as genuine artefacts; 
they have been crudely modified by hominids to accentuate 
their shape. These are the Venus of Tan Tan (Morocco, 300-
500k years BP) and the Venus of Berekshat Ram (the Golan 
Heights, 250-280k years BP). Although the pebbles originally 
resembled hominid figures, if the theories that these were 
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modified are correct, then it seems reasonable to label the arte-
facts as the very first instances of artificial life. Their rough 
morphologies are a direct result of the application of simple, 
very simple, technology.

Leading into the Upper Palaeolithic period the artistic prac-
tice of our ancestors across several continents was unmistaka-
bly sophisticated. Many exquisitely fashioned ivory and bone 
figurines  representing animals and humans have been recov-
ered, especially from Europe’s Jura mountains. Also spectacu-
lar, the caves of Chauvet and Lascaux in southern France were 
decorated around 30k and 15k years BP respectively with 
countless wall paintings. Between them the murals in these 
passages and caverns include horses, bison, lions, bears, pan-
thers and many more lovely beasts.

At Chauvet there is, for the period, an unusual drawing 
dubbed The Venus and The Sorcerer. This appears to show a 

female pubic triangle and legs 
over which a minotaur-like fig-
ure looms – perhaps the first of 
many millennia of later fusions 
of animals and beasts – chi-
maera. This trope has main-
tained its cultural significance 
in mythology and art to the pre-
sent day. The first fantastical 
animal/human fusion is truly 
an important step for artificial 
life as it is early recognition of 
the possibility for living things 
outside of direct experience. In 

fact, even in 1987 when the first academic conference officially 
called “Artificial Life” was organised by American researcher 
Chris Langton, he suggested the field be an exploration of “life 
as it could be”. In their own way, this is something our ances-
tors considered in the depths of Chauvet cave.

Certainly the aims and beliefs of the people of the Upper Pa-
laeolithic would have been unlike our own. But considered 
coarsely, they too must have recognised a difference between 
themselves, animals and the inanimate. They may have situ-
ated the boundaries differently to us, for instance rivers, 
waves, clouds, planets and stars might have been lumped to-
gether as “self-movers”, a term later popular with classical 
Greek thinkers. Regardless, collectively the representational 
finds we have are evidence of the complexity with which visual 
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Detail from the paintings at Lascaux caves reproduced on a wall of the 
Gallery of Paleontology and Comparative Anatomy, Paris.

A sphinx, Athens (560-550 CE) 
Musée du Louvre E718.



representations in two and three dimensions were made of ani-
mals and hominids. Such work clearly drew many hours of 
skilled labour across the globe. It did this for many thousands 
of years before the advent of civilisation in Mesopotamia, 
Egypt or Greece. It is therefore no stretch to say that even 
with the simplest technology imaginable, life’s representation 
has been at the forefront of conscious minds. The manufac-
ture of visual likenesses using painting and sculpture contin-
ues unabated to the present day.

Further reading

Oakley, K.P., Emergence of Higher Thought 3.0-0.2 Ma B.P. 
Philosophical Transactions of the Royal Society of London. 
Series B, Biological Sciences, 1981. 292(1057): p. 205-211.

Bednarik, R.G., A figurine from the African Acheulian. Cur-
rent Anthroplogy, 2003. 44(3): p. 405-413.

d'Errico, F. and A. Nowell, A New Look at the Berekhat Ram 
Figurine: Implications for the Origins of Symbolism. Cam-
bridge Archaeological Journal, 2000. 10(1): p. 123-167.
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TOPICS

1. Articulated dolls

2. Wheeled animals

3. Puppets and marionettes

SECTION 3

Wheels and joints
A visit to a well-stocked toy shop to-
day reveals countless shelves of 
brightly coloured playthings, many 
of which have equivalents dating 
back to ancient Mesopotamia, 
Egypt and Greece. Now as then, 
many of the toys replicate the ap-
pearance of animals, a few extend 
this to replicate some aspect of ani-
mal motion. Examples include a 
very cute hedgehog, lion and a bird 
on little wooden carts dating from 
between 1500 and 1200 BCE. The 
Louvre displays a Greek buffalo 
from antiquity that does away with 
the cart altogether. Its axles are 
mounted directly through its body 
where its legs ought to be. An Egyp-
tian cat and a Nile crocodile, both 
with articulated jaws, have also 
been recovered. This same mechani-
cal snap, coupled with the mobility 
provided by the wheels of the buf-
falo, amuses toddlers 4000 years 
later as they trundle their toys 
around the floors of the world.

Another current toy with ancient origins is the articulated 
doll. These have been produced with jointed legs, knees and 
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A toy cat (or lion) with an articulated jaw 
operated by tugging a string. From The-
bes, Egypt. New Kingdom (1550-1070 
BCE). British Museum EA 15671

Clay-bodied toy mouse with mov-
ing tail and mouth of wood. Egypt, 
New Kingdom (1550-1070 BCE). 
British Museum EA 65512 Articulated terracotta 

Pyrrhic dancer; doll 
dressed in helmet and 
cuirass. Greek, Corinth (c. 
450 BCE). British Museum 
GR 1930.12-17.5. BM Cat 
Terracottas 930.



sometimes shoulders at least 
since 700 BCE. Like jointed 
dolls, the origins of mario-
nettes and other puppets 
stretch back to antiquity, es-
pecially in Asia and Greece 
where they also found favour 
as a basis for philosophising 
about human behaviour. For 
instance there is a tale from 
China of a shadow puppet be-

ing used to console a king whose favourite concubine was re-
cently deceased. In Greek philosophy Plato refers to living 
creatures as sinew and cord driven puppets of the gods, Aris-
totle uses the mechanisms of self-moving puppets as an anal-
ogy to assist him in his explanation of an animal’s response to 
stimuli.

Throughout history, replicas of animal motion have continued 
to fascinate us. The current attempts to mimic it extend into 
the virtual world of computer animation and graphics, but 
life-sized animatronics remain popular in certain contexts – 
for instance, as tacky showpieces to frighten museum visitors 
with the gaze and roar of Tyrannosaurus Rex. Roboticists too 
are interested in animal motion as inspiration for their own 
autonomous mobile machinery. This has applications in ex-
ploration, rescue, entertainment and (sadly) warfare since ani-
mals are often well adapted for motion through complex natu-
ral terrain.
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A toy wooden horse that originally ran on wheels/axles 
mounted through its feet. Roman period, Oxyrhynchus, Egypt. 
British Museum GR 1906.10-22.14

Buffalo on wheels. Ancient Greece 
(probably 800–480 BCE). Louvre, 
Collection Campana, 1861 Cp 4699.

Terracotta horses and cart. Daunian, South Italy (750-600 BCE). 
British Museum GR 1865 1-3.53



PNEUMATIC ENGINEERS OF ANCIENT GREECE

1. Ctesibius of Alexandria (fl. c. 270 BCE)

2. Philo of Byzantium (c. 280 - 220 BCE)

3. Hero of Alexandria (c. 10 - 70 CE)

SECTION 4

Breath
Many cultures consider their creation deity to have built hu-
mans of earth, clay, stone or mud, sometimes this was thought 
to have been performed quite literally on a potter’s wheel or in 
a potter’s workshop. Examples of deities working with earthly 
media arise in the stories of ancient Egypt, China, the Middle 
East, Africa, Greece and Rome to name a few. This is hardly 
surprising given, as we have seen, that the materials had been 
known for around 3 million years to be capable of holding hu-
man form. But what distinguishes inert earth from animated 
creatures? Why didn’t statues just get up and move about? 
The missing ingredient was breath! According to several cul-
tures this was placed by the deity in the inert sculpted earth 
and only departed at death.

Perhaps, thought some inventors of ancient Greece, breath 
might be made to emanate from our own technological crea-
tions? This idea proved a viable means of demonstrating the 
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Come hither, all you drinkers of pure wine,- 
Come, and within this shrine behold this rhytum, 
The cup of fair Arsinoe Zephyritis, 
The true Egyptian Besas, which pours forth 
Shrill sounds, whenever its stream is opened wide,- 
No sound of war; but from its golden mouth 
It gives a signal for delight and feasting, 
Such as the Nile, the king of flowing rivers, 
Pours as its melody from its holy shrines, 
Dear to the priests of sacred mysteries. 
But honour this invention of Ctesibius, 
And come, O youths, to fair Arsinoe's temple.

Athenaeus, 3rd C. CE

“Birds made to sing and be silent alternately by flowing water”, 
Pneumatics (1st C CE), in “The Pneumatics of Hero of Alexan-
dria” (1851), Taylor Walton and Maberly publishers, trans. 
Woodcroft. Image out of copyright.



principles of a field that was known in ancient Greece as Pneu-
matics; the study of pressure, especially as it related to the 
movement of air and water. An added complication was the 
debate concerning a “philosophical” pneuma. This mysterious 
substance was at least partially responsible, according to the 
thinking of the time, for animating living bodies. It was quite 
distinct from air, but the linguistic doubling betrays a similar-
ity between the two materials that lends the pneumatic de-
vices an air of lifelikeness. Pneuma, even in living human tis-
sue, was often very closely associated with physical air.

Ctesibius

The inventor Ctesibius (fl. c. 270 BCE), 
alluded to above in Athenaeus’ verse, 
was an early pneumatic experimentalist 
from ancient Greece who was very inter-
ested in making devices that could 
move themselves – automata, literally, 
self-movers. The breath, a whisper, a 
voice, a kiss; these are all associated 
with life and it was therefore no sur-
prise that his experiments often took 
the form of statues that appeared to 
live. A breakthrough in his work, in fact 
in technology generally, was the manu-
facture of water-clocks (called at the 
time, clepsydrae, literally, “water 
thieves”) with a regulated flow. He used 
his improved clepsydrae to power sim-

ple moving figures and to sound hourly alarms. Sometimes 
Ctesibius’ clock figures blew trumpets or whistles, a trick man-
aged by rapidly filling a vessel with water, causing air to be 
evacuated through the appropriate sounding mechanism. 
Other devices had small figures that rose and fell along gradu-
ated columns holding pointers indicating the time.

Philo

Philo of Byzantium (c. 280 - 220 BCE) continued working in 
the tradition of Ctesibius. He invented a mechanical maid that 
dispensed wine when a cup was placed in her hand, then 
mixed the wine with water to make it suitable for drinking. 

Philo created another vessel that sup-
ported a metal tree upon which a clev-
erly wrought mother bird nested, shield-
ing her chicks from harm. As water or 
wine was poured into the vessel, a 
snake, driven out by the liquid, alarm-
ingly rose towards the mother’s brood. 
When it approached too closely, the 
mother ascended above her family, 
spread her wings and frightened the 
snake back into its hole. She then folded 
her wings and returned to her young. 
The whole device was driven by con-
cealed floats suspended in the liquid. Us-
ing this simple technology Philo had imi-
tated the behavioural response of a pro-
tective animal in danger.
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“Libations poured on an Altar, and a Serpent 
made to hiss, by the Action of Fire.” Sect. 60 of 
Pneumatics (1st C CE) in “The Pneumatics of 
Hero of Alexandria” (1851), Taylor Walton and 
Maberly publishers, trans. Woodcroft. Image out 
of copyright.



Hero

Perhaps the most famous ancient Greek pneumatics practitio-
ner was Hero of Alexandria (c. 10-70 CE). Like Philo, he de-
vised many animated creatures driven by falling water and 
pressurised air. These included hissing serpents and dragons 
and trick vessels with animals that slurped liquids from them, 
or deposited liquids into them when the water level fell. Some 
of Hero’s automated dioramas replicated the action and re-
sponse seen in the work of his predecessor. For instance, Hero 
devised a water basin surrounded by twittering metal birds. 
Nearby, sat an owl with its back turned. At regular intervals 
the owl would cast its gaze towards the twittering birds, who 
would fall silent, until once more the owl turned its back on 
them and they could resume their twittering unthreatened.

Hero also devised two automatic miniature theaters. Each con-
sisted of a solid plinth upon which were positioned little ani-
mated figures that mechanically enacted a series of scenes. 
The theaters were powered internally by a falling weight.

The fall of the weight was slowed and regulated by sitting it 
within a grain filled clepsydra that operated like an hourglass. 
One of these theatres could move onto a large performance 
stage by itself – rolling from offstage then coming to a halt in 
the limelight. It would give an animated performance that in-
cluded altar fires being lit and extinguished, a dance to Bac-
chus (the god of wine) with flowers and flowing alcohol. Auto-
matically generated sound effects enhanced the show. The con-

traption would then 
mysteriously roll 
back off stage of its 
own accord.

Remarkably, Hero 
designed a program-
mable self-moving 
cart. This ingenious 
automaton was not 
only capable of for-
ward and reverse pro-
grammed move-
ments, if set up prop-
erly it could execute 
complex turning mo-
tions typical of ani-
mals. The steering 
mechanism was con-
trolled by a dual cord 
tugged by a con-
cealed falling weight 
in the same manner 
as his theaters. The 

two cords were wrapped individually around the two halves of 
the cart’s split rear axle, enabling independent drive for each 
wheel. Each wheel’s axle could be studded at different posi-
tions around its circumference with wooden pegs. By winding 
the cord around a peg, Hero could alter the direction an axle 
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The stage of Hero’s automatic, self-moving 
theatre from Schmidt, W. (1899). "Herons 
von Alexandria, Druckwerke und Automat-
entheater". Leipzig, Druck und Verlag von 
B.G. Teubner. Image out of copyright.



was spun as the cord was tugged by the falling weight. This re-
versal allowed him to change the direction each wheel rotated 
independently of the other, enabling the vehicle to be “pro-
grammed” to turn as desired. Pauses could be added to the mo-
tion by leaving slack in the cord between axle-pegs.

Summary

The pneumatic inventions of the ancient Greeks were proba-
bly not intended to be living things, as much as they seemed 
to mimic animal and human behaviour. Many of them were 
presented as exciting demonstrations of the principles of pneu-
matics by engineers with a flair for the theatrical. Some of the 
devices may have been used in temples to attract and impress 
visitors. Others could have appeared on dinner tables for con-
versation starters at the drinking parties of the well-to-do. The 
inventions were sometimes celebrated in verse and prose, for 
instance in the poem quoted earlier, but by and large they 
seem to have been forgotten as the centuries saw the decline 
of ancient Greece. Eventually, a few Arab inventors came 
across the manuscripts of the Greeks and began to explore the 
wonderful descriptions and instructions they found – adding 
a unique and exciting Islamic flourish.

Further reading

Vitruvius (c. 15 BC). The Ten Books on Architecture. Cam-
bridge, Harvard University Press, 1914. (9:8:2-7, 10:7-8 for in-
formation on Ctesibius.)

Prager, F. D. (1974). "Philo of Byzantium, Pneumatica, The 
first treatise on experimental physics: western version and 
eastern version", Dr. Ludwig Reichert Verlag Wiesbaden.

Hero of Alexandria (1st C CE). "The Pneumatics of Hero of Al-
exandria". London, Taylor Walton and Maberly, trans. Bennet 
Woodcroft, 1851.

Schmidt, W. (1899). "Herons von Alexandria, Druckwerke 
und Automatentheater". Leipzig, Druck und Verlag von B.G. 
Teubner. (In Greek and German.)

26



AUTOMATON ENGINEERS OF THE MEDIEVAL 

ISLAMIC AND CHINESE WORLDS

1. Banū Mūsa bin Shākir – the brothers Mūsa (c. 
850 CE) 

2. Ibn Khalaf al-Murādī (1266, orig. 11th C. CE)

3. Badi'al-Zaman Abū al-'Izz Ismā'īl ibn al-Razāz 
al-Jazarī (1136 - 1206 CE)

4. Su Sung (1020 - 1101 CE)

SECTION 5

Islamic and Chinese 
automata

Perhaps the most famous of the Arab automaton engineers 
was Badi'al-Zaman Abū al-'Izz Ismā'īl ibn al-Razāz al-Jazarī, 
or just al-Jazari for short (1136 to 1206 CE). He was employed 
by the rulers of a northern province of the Jazira region in Up-
per Mesopotamia to preserve his knowledge of automata in 
The Book of Knowledge of Ingenious Mechanical Devices 
(1206).

In the Arab world an earlier text, The Book of Ingenious De-
vices had been produced in Baghdad by the Banū Mūsa bin 
Shākir (c. 850 CE). This had demonstrated many of the pneu-
matic principles described by Hero of Alexandria, primarily 
using various kinds of trick wine and water vessels for drink-
ing applications. The devices in this earlier Arab text were not 
much concerned with the animation of figures. Al-Jazari how-
ever, was keenly interested in automata. He added to this a 
practical engineering focus that had not been seen even in the 
work of the ancient Greeks. Al-Jazari took pride in the fact 
that he had personally tested the workings of his machines. 
They were supposed to be functional ingenious devices for 
hand washing, wine serving, party entertainment and telling 
the time. Al-Jazari even describes a few for the (hopefully reli-
able!) measurement of blood let from a patient’s arm. These 
are particularly interesting for the way they employ simple me-
chanical human scribes to count units, and tens of units, of 
blood.

Among al-Jazari’s devices are many intricate human and ani-
mal automata. In a unique un-pneumatic vein, al-Jazari de-
scribes the manufacture of a calibrated candle-clock based 
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around a tall brass candle-
holder. This has a falcon, 
its wings outstretched, 
perched at its base. To-
wards the top of the 
candle-holder a shelf sup-
ports a sword-bearing 
slave. The candle is topped 
with a metal cap for the 
wick to pass through. As 
the candle is consumed by 
the flame, it is automati-
cally raised to ensure that 
the lit wick always pro-
trudes through the cap. 
During the night the me-
chanical swordsman 
slashes at the wick, trim-
ming any excess. At the 
swordsman’s stroke, a 
metal ball falls from the 
mouth of the falcon into a 
container at its feet. By 

counting the balls it is possible to tell the hour.

Like his predecessors in Greece, al-Jazari describes several 
water-clocks interpreted with the assistance of animated fig-
ures. Although he is probably best know for his enormous and 
very animated Elephant Clock (an 8.5m replica has been in-

stalled in the Ibn Battuta shopping mall in Dubai), I prefer an-
other.

My favourite of al-Jazari’s water clocks involves a peacock, 
peahen and two chicks driven by a constant flow clepsydra. 
The peahen rotates in an arc, her beak smoothly marks the 
passing of half an hour. A series of 15 roundels forming an 
arch above the scene change colour from white to red to indi-
cate the passing of half hours. The peace is interrupted every 
half hour as the two chicks whistle and peck at one another. 
The peacock turns slowly with his tail upright in display. Fi-
nally, the peahen’s orientation is automatically reset so that 
the arc of the next half hour can be swept out by her beak like 
the last.

Another exciting Arab text that includes automata is The Book 
of Secrets in the Results of Ideas (1266 from an 11th C. origi-
nal) by Ibn Khalaf al-Murādī. This was probably written in 
Cordoba in the south of Spain. Among other machines, it de-
scribes intricate designs for clocks that schedule multiple hu-
man and animal figures and also miniature animated vi-
gnettes that sequence characters to tell scenes from fairytales.

Al-Muradi’s figures typically emerge from miniature doors be-
fore moving about in various ways. The doors conveniently 
hide the figures from view between performances. This is a fea-
ture that appears on many early Islamic clock designs and is 
reminiscent of the shutter on much more recent cuckoo clocks 
originating in south western Germany. Once outside their 
housing, the automata of al-Muradi may enact a short scene 
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Al-Jazari’s candle clock with wick-
trimming swordsman and ball-
dropping falcon. Image from MS held 
by the Smithsonian Inst. Early 14th 
century (1315 CE, December) /Dated 
Ramadan 715. Farruk ibn Abd al-
Latif (CB). Opaque watercolor, ink, 
and gold on paper (H: 30.8 W: 21.9 
cm), Syria. Purchase, F1930.71. Im-
age out of copyright.



such as a sword fight, 
chase, or perhaps simply an 
action and response such as 
the appearance of a threat 
and the retreat of a fearful 
character. In one case, a sur-
prise villain attempts to as-
sassinate two women who 
rapidly, and safely, retreat 
to their housing. In a longer 
mechanical episode, a boy 
appears from his hiding 
place in a well to call for a 
lovely girl. Four gazelles ar-
rive to drink as the object of 
the boy’s affections 
emerges from the doors of 
her home. At this, three ven-
omous snakes set by the 
boy’s rival appear and 
frighten the gazelles away. 
The boy himself retreats 

into the well where he hides until the snakes depart.

Coloured roundels and the dropped metal balls employed by 
al-Jazari to allow a viewer to read the time are found likewise 
in several of al-Muradi’s works, including some that stage ani-
mated plays. Hence, as well as providing miniature theatre, 
some of the devices had practical applications.

During the period from the Banū Mūsa to al-Jazari, the Chi-
nese were also constructing complex mechanical devices 
adorned with automata. Perhaps the best known is the grand 
Chinese astronomical clock of Su Sung. This multi-storied 
tower, built c. 1090 CE, sported literally dozens of animated 
figures to sound the time, jacks as they later became known in 
Europe. The clock also included a large armillary sphere and a 
celestial globe for the serious business of tracking the heav-
ens.

Further reading

Ahmad Ibn Khalaf al-Murādī, (1266). "The Book of Secrets in 
the Results of Ideas". Trans. A. Ragab, Milan, Italy, Leonar-
do3. 

Badi'al-Zaman Abu'l-Izz Isma'il b. al-Razzaz al-Jazari, (1206). 
"The Book of Knowledge of Ingenious Mechanical Devices". 
Trans. D.R. Hill, Dordrecht Holland, Boston U.S.A, D. Reidel.

Banū Mūsa bin Shākir, (c. 850 CE). "The Book of Ingenious 
Devices". Trans. D.R. Hill, Dordrecht, Holland, D. Reidel.

Needham, J., W. Ling and D. J. d. S. Price (1960). "Heavenly 
Clockwork, the great astronomical clocks of medieval China". 
Cambridge, UK, Cambridge University Press.
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The water-powered astronomical 
clock tower of Su Sung, c. 1090 CE. 
(Hsin Fa Yao, ch. 3, p. 4a). Repro-
duced from Joseph Needham, Sci-
ence and Civilization in China, Vol. 
4, Pt. 2, Mechanical Engineering, 
Cambridge Uni. Press, 1965, p. 451. 
Image out of copyright.



TOPICS

1. The origins of the clockwork metaphor

2. Clock-mounted automata

3. Automata gain their independence

SECTION 6

Clockwork
The origins of the clockwork metaphor

As we have seen, the clocks of ancient Egypt, Greece, Rome, 
the Islamic empire and China usually required a continuous 

stream of liquid to be provided. 
This was measured against a 
scale to tell the time, or its 
weight was used to trigger a dis-
crete event such as the tipping 
of a bucket or the turning of a 
wheel. This event might in turn 
trigger the clanging capture of 
a steel ball in a tin pan, or the 
rotation of a gear in a more 
complex machine, to mark 
time audibly or by the move-
ment of a figure.

Late in the 13th century, a 
verge escapement was in-

vented. This mechanical device repeatedly and regularly halts 
and releases a toothed wheel that might be driven to rotate by 
a falling weight or coiled spring. Instead of allowing the 
toothed wheel to spin rapidly, exhausting the energy stored in 
the system, the regular halting and releasing turns what 
would otherwise be a rapid continuous unravelling, into the 
oscillation of a pendulum or a sprung balance wheel. The 
oscillatory motion can be used to drive the hands of a clock or 
the parts of an automaton. With improvements in mechanical 
escapement design came the possibility of manufacturing 
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This dulcimer player was built in the late 18th century by David 
Roentgen and Pierre Kintzing, possibly as a representation of Marie 
Antoinette. It is one of many androids (human-like automata) in 
the collection of the Conservatoire National des Arts et Métiers, 
Paris.

This is an early image of a verge 
escapement from Giovanni de 
Dondi's astronomical clock, the 
Astrarium, 1364, Padua, Italy. 
The image appeared in de 
Dondi’s Tractatus Astrarii. 



highly accurate timepieces. The basis of the mechanism is still 
used in today’s boutique wristwatches and ornamental clocks.

Over the five hundred years since the invention of the me-
chanical escapement, clockwork automata mimicked the 

movements of humans and other ani-
mals throughout Europe. In large 
part, their development was acceler-
ated during the Renaissance by the 
rediscovery and translation of Hero 
of Alexandria’s texts. These came to 
be known via earlier translations ob-
tained through the Islamic empire.

In literature, science and philosophy, 
the clockwork mechanism became 
synonymous with the concept of life. 
The French philosopher René Des-
cartes (1596-1650) quite literally be-
lieved animals to be god’s clockwork 
automata. To Descartes’ mind how-
ever, humans had an additional im-
mortal, god-given soul that provided 
us with our faculty of reason and ele-
vated us above the other creations. To 
Julian Offray de La Mettrie (1709–
1751), another French philosopher 

(and physician), it seemed possible that the whole of human 
behaviour might be explained by reference to mechanistic 
processes. Soon after La Mettrie’s time, perhaps arriving with 

the German Romantics of the early 19th century, the concept 
of the automaton came to imply a meticulous, time-obsessed, 
uncreative lack of spontaneity. To be an “automaton” was, in 
that time as now, to be sub-human. This didn’t stop the devel-
opment of incredible works of mechanical artificial life, the 
predecessors of today’s robots. Many of these came from Euro-
pean clockmakers and inventors. Some arose in Japan which 
was later to become a centre for robotics culture, research and 
development.

Clock-mounted automata

Some of the earliest automata operated by completely me-
chanical escapements and drive mechanisms appeared on 
European town clocks. These were situated in public squares 
as important civil regulators and displays of city wealth. A 
common form of clock automaton was the “jack” or jacque-
mart, a mechanical bell-ringer that chimed the hours.

The Orloj, an astronomical 
clock installed in Prague’s old 
town square in the early 15th 
century, still presents today an 
entire parade of automata. Two 
windows open above its large 
blue dial, an astronomical clock 
face, and a procession of twelve 
apostles begins. Each turns to 
face the crowd through a little 
portal before making way for 
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A deadbeat escape-
ment mechanism. The 
t o o t h e d w h e e l i s 
driven to rotate via a 
gear train that is acti-
v a t e d b y e n e r g y 
stored in a coiled 
spring or a suspended 
weight. The wheel’s 
motion is repeatedly 
halted and released as 
the pallets interfere 
with it. This interfer-
ence converts the 
checked spinning mo-
tion of the wheel into 
the regular oscillation 
of a pendulum that 
runs vertically off the 
bottom of the image.

Revolving Jacks that survive 
from 16th century Netherlands, 
now in the collection of the Brit-
ish Museum, London.



the next. The figure of Death noisily 
tolls his bell, an hourglass sits in his 
other hand as a reminder that the sands 
never cease to run. Beside Death, a Turk 
wearing a turban strums his lute and 
nods his head in time to the perform-
ance. Across the clock, Vanity admires 
his appearance in a hand-mirror and a 
Jew simultaneously taps his cane, 
shakes his 
head and jin-
gles a bag of 
gold. With 
its Turk and 
Jew the Or-
loj provides 
a daily re-

minder that our race relations 
have not progressed far since the 
Middle Ages, but also that auto-
mata can, and have, played signifi-
cant sociopolitical and cultural 
roles.

Automata gain independence

Many mechanical marvels were 
produced for appearances in cathe-
drals without reference to time-
keeping. Much as the construc-

tions of Hero of Alexan-
dria might have been 
used in classical tem-
ples, for awhile, some 
European places of wor-
ship used automata as a 
means to attract people 
to their services. This 
didn’t last long. Sadly, 
the “false idols” and un-
savoury gimmicks were 
eventually destroyed by 
zealots. A wind-up 

automaton monk dating from the mid 16th century survives in 
the collection of the Smithsonian Institution. This figure 
walks about, striking his chest with an arm as he waves a 
wooden cross and rosary in the other. His eyes roll around in 
their sockets and his lips move silently as his head turns and 
nods. Sometimes the monk kisses his little cross as he prays 
for the owner, devoutly, automatically and ad infinitum.

Automata were also made for display in the exclusive gardens 
and chambers of the aristocracy, and for public exhibitions. 
Even Leonardo da Vinci seems to have built a couple– a walk-
ing lion that produced a bouquet of lilies from a cavity in its 
chest, and a puppet-like mechanical knight. Some androids – 
automata of human appearance – could write, play musical in-
struments or draw pictures. Some were even made to utter 
sounds.

32

Jacks strike the bell on 
this Medieval clock 
from the Netherlands, 
1450-1550. The clock is 
now in the collection of 
the Museum Speelklok, 
Utrecht, Netherlands.

Detail of clock modelled af-
ter the Strasbourg cathedral 
clock (1589). Top layer 
down: Death strikes the 
hours beside Jesus; the four 
ages of Man strike quarter 
hours; angels proceed be-
fore a seated Madonna and 
child while music plays; 
days of the week are repre-
sented by a parade of the 
planets. Collection of the 
British Museum, London.

The town clock in Bern, Switzerland is 
situated in the Zytglogge (time bell) me-
dieval tower. This important civil build-
ing has housed a time-keeper since the 
early 15th century.

https://www.youtube.com/watch?v=Ycyj76VPOtc
https://www.youtube.com/watch?v=Ycyj76VPOtc


One of the most famous inventors of 
automata was Jacques de Vaucanson 
(1709–1782). Perhaps he is best 
known for his duck, an automaton 
that could eat a pellet offered to it, ex-
tend its neck as it swallowed, then 
defecate a foul smelling waste out the 
other end! This complex machine 
could flap its wings and wriggle 
about in what was, by reputable re-
ports of the time, an astonishing mar-
vel of clockwork invention. Vaucan-
son also created a life-sized flautist 
and a mechanical player of the pipe 
and drum. The figures did not fake 
their musical performances, they 
really played by breathing into and 
striking their instruments.

The last automata I will describe are 
Karakuri Ningyo. These are Japa-
nese androids, mechanical robots de-
signed to amuse and entertain. Par-

ticularly popular during the 19th century were tea-serving 
dolls, independently mobile clockwork figures that would en-
ter a room and walk towards a guest, carrying with them a cup 
of tea. When the cup was lifted the automaton would stop. 
The guest might then drink the tea before returning the empty 
cup to the tray the automaton was carrying. At this, the 

automaton would turn and walk back out the way it had en-
tered.

A master of Japanese automata, Hisashige Tanaka (1799-
1880), produced a lovely archer boy. This figure sits placidly 
before his quiver. He looks downwards, draws an arrow, 
strings his bow, inspects the target... and fires. Several times. 

Honestly! This beautiful 
automaton still survives.

Further reading

Kang, M. (2011). "Sublime 
Dreams of Living Machines: 
the automaton in the Euro-
pean imagination". Cam-
bridge, Massachusetts; Lon-
don, England, Harvard Uni-
versity Press.

Riskin, J., Ed. (2007). “Gene-
sis Redux, Essays in the His-
tory and Philosophy of Artifi-
cial Life”. Chicago / London, 
University of Chicago Press. 

Wood, G. (2003). "Living 
Dolls, A Magical History of 
the Quest for Mechanical 
Life". Kent, Faber and Faber. 
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Vaucanson’s duck concealed a 
“fake” digestive system in the 
sense that it didn’t chemically 
breakdown its food or use it to 
build biomass. It could however, 
consume a pellet and wriggle 
about as if eating and swallow-
ing it. A short time later a foul-
smelling substance would be 
emitted from its rear end, much 
to its audience’s amazement and 
amusement! This image from 
1738 is an attempt by one ob-
server to suggest how it might 
have worked.

Reproduced from Chapuis, A. 
and E. Gélis (1928). "Le Monde 
des Automates, etude historique 
et technique", Paris. Vol. II, p. 
151. Image out of copyright.

The Writing Hand pens 
an extract from the poetry 
of Virgil, “May God not 
impose ends or deadlines 
on this house”. It was in-
vented by Friedrich von 
Knaus in 1764, dedicated 
to the House of Lorraine, 
rulers of Tuscany at the 
time. Now in Museo Gali-
leo, Florence, Italy (Inv. 
#3195).

http://web-japan.org/nipponia/nipponia38/en/feature/feature06.html
http://web-japan.org/nipponia/nipponia38/en/feature/feature06.html


The frontspiece from an account of the mechanism of Jac-
ques de Vaucanson’s automata. Here are shown a life-sized 
flautist and a player on the pipe and drum. The account was 
presented to the Royal Academy of the Sciences, Paris, 1742.

34

The Settala devil. An 
automaton, possibly 
manufactured from a 
statue of Jesus, (16th 
or 17th C). The mecha-
nism allows the head 
and eyes to turn, and 
for the devil to poke 
out its tongue and 
emit a strange sound. 
Collection of the Mu-
seum of Applied Arts 
of Castello Sforzesco, 
Milan, Italy.

T i p p o o ’ s T i g e r 
s i m u l a t e s t h e 
groans and roars of 
the demise of a 
E u r o p e a n . T h e 
work has European 
mechanical inter-
nals enclosed in a 
South Indian carv-
ing. It was created 
in the late 18th cen-
tury. Collection of  
the V&A Museum, 
London.



TOPICS

1. Heat and self-regulation

2. Cybernetics

3. Frogs legs and animal electricity 

4. Robotics

SECTION 7

From steam to electricity
Heat and self-regulation

The late 18th and early 19th century saw the beginning of the 
Industrial Revolution in Britain. Dependence on water as a 
power source fell as efficient steam engines of immense power 
began to operate factories day in, day out, and night after 
night. The period saw many transformations in mining, trans-
portation, the textile and other manufacturing industries. 
With steam power came several new perspectives on ma-
chines and life. For instance organisms could be viewed as a 
form of “heat engine”, machines transforming chemical en-
ergy into heat, and then into kinetic energy.

The engineers Matthew Boulton and James Watt, who were 
pivotal in the development of steam power, also developed 
governors to regulate the speed of steam engines. The gover-
nor provided important insights for understanding biological 
organisms as dynamical systems. Automatic governors oper-
ate on a “negative feedback loop” that reduces the rate at 
which fuel (steam entering the cylinders of a steam engine for 
instance) enters the engine as the speed of the engine in-
creases. As the engine gets faster, the steam supply is reduced, 
as the engine gets slower, the steam supply is increased. The 
result of these frequent micro-adjustments is an engine run-
ning, without manual intervention, at a regulated speed. The 
engine is said to be a dynamical homeostatic system because 
it maintains one of its parameters, its speed in this case, con-
stant. It does this by continuously adjusting its behaviour and 
in spite of external variations in its running conditions. Of 
course another way to maintain state in the face of external 
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This centrifugal governor is oper-
ated by a pair of “fly balls” that 
spin at a rate governed by the en-
gine speed. As the engine speeds 
up the balls are flung outwards 
and upwards. This action operates 
control rods to throttle back the 
amount of steam entering the en-
gine. As the influx of steam falls, 
the engine slows and the balls fall 
a little under gravity. Hence, the 
amount of steam entering the en-
gine is increased slightly. This  
feedback/coupling between speed 
and fuel supply automatically regu-
lates the engine.



perturbations is to be inert, like a rock. But we don’t learn so 
much about organisms from stasis as we do by studying dy-
namics. This is clear in light of the concept of autopoiesis dis-
cussed earlier.

Organisms are homeostatic dynamical systems: mammals for 
instance, keep their body temperature approximately constant 
even as the environmental conditions fluctuate; they maintain 
constant salinity and hydration; the iris in the mammalian eye 
contracts and dilates to control the amount of light hitting the 
retina. All organisms maintain their organisation – the set of 
relations between their processes of self-production – con-
stant. If they didn’t do this they would cease to exist. Evolu-
tion too, the process by which new organism traits are intro-
duced, modified or eliminated from biological populations, 
has been explicitly likened to a centrifugal governor by one of 
its central figures, Alfred Russel Wallace in his famous 1858 
paper “On the tendency of varieties to depart indefinitely from 
the original type”.

Cybernetics

Self-governance proved to be a valuable insight offering new 
ways of interpreting biology and ecology, and for the construc-
tion of artificial life. In particular, a field dubbed Cybernetics, 
arose in the 1950s, at what was to become the dawn of the In-
formation Age. The field’s practitioners, famously W. Ross 
Ashby, Norbert Wiener, Gordon Pask, and William Grey Wal-
ter, concerned themselves with communication and control 
systems in animals and machines. The cyberneticians were 

very interested in the 
possibilities of feed-
back loops and de-
signed several iconic 
systems exhibiting ho-
meostasis of one type 
or another. The precur-
sors of the thinking 
that led to Artificial 
Life are also apparent 
in their writings:

Cybernetics stands to 
the real machine elec-
tronic, mechanical, 
neural, or economic — 
much as geometry 
stands to a real object 
in our terrestrial 
space... It takes as its 
subject-matter the do-
main of “all possible 

machines”, and is only secondarily interested if informed 
that some of them have not yet been made, either by Man or 
by Nature. What cybernetics offers is the framework on 
which all individual machines may be ordered, related and 
understood – Ashby, An Introduction to Cybernetics, 1956.

The artist Edward Ihnatowicz was one of many exhibiting 
works in the late 1960s and early 70s that were based on the 
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A cybernetic Tortoise designed by Grey-
Walter (c. 1950) in the collection of the 
Science Museum, London. These mobile 
electric robots were equipped with lights, 
sensors and simple circuits that allowed 
them to exhibit many animal-like behav-
iours including following one another, 
fleeing, even returning to their hutch 
when they needed a recharge of their bat-
teries. More recently, Valentino Braiten-
berg has designed a host of (conceptual) 
machines using similar principles. These 
are described in his book Vehicles (MIT 
Press, 1984).



principles of Cybernetics. His Senster robot was a giant arma-
ture that responded to the presence of exhibition visitors in 
ways uncannily like those of a sentient being. His sculpture 
S.A.M. (Sound Activated Mobile) took on a less threatening 
but equally lifelike appearance. It resembled a potted flower 
that turned this way and that to engage humans who had 
come to talk to it on its plinth. A number of artworks in the 
landmark 1968 London exhibition curated by Jasia Reichardt, 
Cybernetic Serendipity, engaged their audiences in similar 
ways.

Alan Turing and John von Neumann, two fa-
thers of modern day Computer Science, also 
contributed to the development of Cybernet-
ics in different ways. Some of their work is de-
tailed later in this book. In general, the field 
has played a significant role in establishing 
the position of the computer in Artificial Life 
and interactive technology. Unlike the mod-
ern digital computer, the majority of cyber-
netic devices are notably analogue, relying on 
continuous electrical signals or mechanical 
movements. Still, the ties between electrical 
technology, information transfer and biology 
were explicitly considered here, but not for 
the first time. Before stepping again towards 
contemporary artificial life, it is worth return-
ing to the beginning of the 19th century, this 
time to understand how electricity first came 

to be associated with life.

Frog legs and animal electricity

Many readers will be familiar with Mary Shelley’s 1818 tale 
Frankenstein; or, The Modern Prometheus. If not with the 
book (which is well worth reading!) then at least with the clas-
sic black and white 1931 film starring Boris Karloff as the mon-
ster. Frankenstein’s monster was cobbled together from parts 
of corpses. It was animated, in a way that the narrator of the 

tale keeps secret, with electricity.

Shelley was inspired to write this story, warn-
ing of the potential dangers of artificial life, by 
the discoveries of the Italian physician Luigi 
Galvani. In 1771 Galvani had discovered that 
electricity caused a dead frog’s leg to twitch. 
Although Galvani’s ideas about bio-electricity 
were largely superseded by those of his con-
temporary, Volta, he nevertheless set people 
wondering if electricity was life’s long hidden 
secret key. In 1803, Galvani’s nephew, 
Giovanni Aldini, aimed to determine if elec-
tricity might be an elixir to reanimate victims 
of drowning. He recovered the body of the 
murderer George Foster from the gallows and 
had it carted to the Royal College of Surgeons. 
Before an audience, he applied electricity to 
the corpse. Its face quivered, an eye opened, 
its fist clenched and punched. The corpse’s 
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Galvani set up numerous experi-
ments to test the conditions under 
which electricity could be used to 
force the muscles of a deceased 
frog’s legs to contract. The initial dis-
covery of the phenomenon occurred 
by accident. One of Galvani’s assis-
tants touched a scalpel blade to a 
nerve in the frog’s leg while it lay on 
a table shared with a machine de-
signed to generate electric charge. 
To his surprise the leg twitched vio-
lently. To everybody’s wonder, the 
experiment was repeatable.



legs kicked and its back arched in a gruesome display. But it 
didn’t return to life. That was left to Frankenstein’s monster 
in Shelley’s purely fictional account of a (scientific) obsession 
carried too far.

Robotics

The term robot appears to have been born through the pen of 
Karel Čapek in his short play, R.U.R. (Rossum’s Universal Ro-

bots). First published in 1921, 
this literary work explores the 
use of intelligent robots as slave 
labour, and their revolt against 
the human masters, their crea-
tors, who enslave them. In the 
first feature length science fiction 
film, the silent Metropolis (Fritz 
Lang, 1927), the role of electricity 
in animating a woman-robot-
cyborg is made apparent by vis-
ual effects that instigated an en-
tire genre of cinema. In this tale 
human workers form an under-
class of what are essentially bio-
logical automata, slaves to 
wealthy masters who own the fac-
tories in which the workers must 
spend their dark, mechanical 
days.

It didn’t take long before robots left the pages and screens of 
science fiction and entered the physical environment. With 
the immense power of the machines of the Industrial Age and 
control systems devised since the middle of the 20th century, 
complex industrial robots could become a reality. Manufactur-
ing and industry have never been the same since. But pleas-
ingly, not all robots are built with productivity in mind. Many 
have been assembled to test the bounds of human ingenuity, 
to probe questions that relate to our understanding of intelli-
gence, the possibilities for machine creativity, or to help us 
comprehend biology and ecology. Many, as most readers will 
be aware, have been built as artificial life just for play.

A note

If there is one section in this brief technological history that 
deserves to be expanded, this is it. The ideas raised within Cy-
bernetics and robotics are tightly intertwined with those of 
contemporary Artificial Life. But rather than dwell on these 
topics in this brief introductory section, the extent to which 
they impact on current thoughts will be clarified throughout 
the following chapters.

Further reading

Ashby, W. R. (1952). "Design for a brain, the origin of adap-
tive behaviour". New York.

Galvani, L. (1791/1953). "Commentary on the Effects of Elec-
tricity on Muscular Motion". Bologna, Italy / Norwalk, Con-
necticut, Burndy Library.

Original movie poster for 
Metropolis (Fritz Lang, 1927). 
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Shelley, M. (1818). "Frankenstein or the modern Prome-
theus", Oxford University Press.
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CHAPTER 2

Artificial Chemistry

Evolution by natural selection has built 
an extensive range of organism bodies. 
These are chemical systems for hosting 
chemical replicators to protect them, to 

find energy to maintain a functional 
outer capable of collecting resources for 
them, and to orchestrate mate selection 
and breeding for the transferral of them 

to create new bodies. Beneath it all is 
chemistry. This chapter considers 

simulations of the emergence of life from 
molecular building blocks through 

reaction-like processes.



TOPICS

1. Alchemy, a chemistry of life

2. The Miller-Urey experiment

3. What is Artificial Chemistry?

4. Fact free science

SECTION 1

The basic elements
The point of view emphasized in this contribution sees adap-
tive systems as based on combinatorial objects of a special 
kind. Objects, namely, that support interaction patterns 
whose targets are the objects themselves. Systems contain-
ing a self-referential constructive loop represented by ob-
jects that define functions that in turn modify objects are 
strong candidates for complex behavior, because the combi-
natorial explosion at the object level carries over to the level 
of interactions. [...] Chemistry is a prime example. Mole-
cules carry reactive properties by which they modify other 
molecules in specific ways, thus creating new molecules 
with new interactive characteristics – W. Fontana, 1990.

Alchemy, a chemistry of life

As discussed when considering autopoiesis as a theory of liv-
ing systems, organisms are a special kind of chemical ma-
chine. They can be viewed as self-sustaining networks of proc-
esses of transformation and destruction of molecules. Chemis-
try is at the heart of life. It is a discipline with a long past 
rooted in convoluted and idiosyncratic rituals and experi-
ments with the materials of alchemy. Many alchemical and 
chemical procedures have been highly relevant to Artificial 
Life throughout the ages. Alchemy’s origins date back to an-
cient Egypt. The diverse practices that characterise it contin-
ued through classical Greece and Rome, into the Medieval pe-
riod and the Renaissance in Europe, the Islamic empire, India 
and China, and were common until just a couple of hundred 
years ago. Amongst alchemy’s many activities was the manipu-
lation of matter, particularly the transformation of metals 
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An alchemist's workshop. Detail from the title page of 
an early book on mining: Beschreibung allerfürnemis-
ten mineralischen Ertzt unnd Bergkwercks Arten. Laza-
rus Ercker, d. 1594. Frankfurt am Mayn– Imprint 
Frankfurt am Mayn: Joannem Schmidt in Verlegung 
Sigmundt Feyerabends, 1580.



from the most “base”, lead, into more “noble” elements like sil-
ver and gold. Tied to this concern was the alchemists’ obses-
sion with unlocking the secret of life, even to go so far as to 
generate humans in glass vessels. The manufacture of an elixir 
promising eternal youth was also on the agenda. The alche-
mists used magical incantations and invoked spiritual refer-
ences, legends and myths that are out of place in today’s labo-
ratories, but they also developed many practices and pieces of 
equipment that are still essential in modern labs. Researchers 
concerned with biochemistry, in particular with the the pro-
duction of “wet” Artificial Life (e.g. the manufacture of a proto-
cell from the same building materials as nature), have particu-
lar reason to be grateful to the alchemists of days past. Many 
who are more interested in software-based artificial life also 
attend to Chemistry by engaging in a sub-discipline known as 
“Artificial Chemistry”. This is arguably an essential bridge be-
tween simulation experiments and tangible, synthetic biologi-
cal organisms. Amusingly, some software-based researchers 
have explicitly acknowledged their fascination with alchemy: 
Walter Fontana has devised a language dubbed, AlChemy and 
Hiroki Sayama calls users of his Swarm Chemistry tools alche-
mists!

The Miller-Urey experiment

In the early 1950s, Stanley Miller and Harold Urey, two Ameri-
can chemists, devised a laboratory apparatus resembling 
something an alchemist might have used with an aim quite in 
keeping with those of some alchemists; to create the building 
blocks of life from inanimate matter. Their apparatus con-

sisted of a tubular glass circuit passing through two chambers, 
one filled with liquid water modelling an ocean, the other 
filled with gases – water vapour, methane, ammonia, and hy-
drogen – thought to have been present in Earth’s early atmos-
phere. The mini-ocean was heated to produce vapour which, 
mixed with the gases, travelled around the loop into the mini-
atmosphere flask. Here the entire gas mixture passed between 
two sparking electrodes to mimic the effect of lightning. The 
gases were then re-condensed and looped back into the mini-
ocean vessel. The purpose of this cycle was to test a hypothesis 
that conditions on the prebiotic Earth were suitable for gener-
ating complex organic compounds. After a day in circulation 
the solution had already turned pink. In a week it was deep 
red and cloudy. When the resulting substance was analysed, 
amino acids, the biological building blocks of proteins were 
identified, having assembled themselves under the experimen-
tal conditions.
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What is Artificial Chemistry?

The Miller-Urey experimental approach is similar to that 
taken by some Artificial Life researchers engaged in Artificial 
Chemistry. The hope is that if some well-considered (virtual) 
ingredients are mixed together in an appropriate way and al-
lowed to interact with one another according to well-
considered interaction rules in a suitable (virtual) environ-
ment, they will self-assemble or self-organise into more com-
plex structures. Hopefully the process can inform our under-
standing of the emergence, behaviour and evolution of life. To-
gether, a researcher’s specification of these three aspects of a 
simulation: atomic or molecular ingredients, reaction rules, 
and the dynamic process by which they interact in a particular 
virtual environment, define an artificial chemistry.

The virtual elements of artificial chemistries are analogous to 
atoms and molecules but they may be represented in many dif-
ferent ways. Possibilities include physically-modelled spheres 
or polyhedra that bond with one another based on collisions 
occurring as they move in 3D space and change state based on 
specified transition rules. For instance consider Self-
Organizing (solid) Cellular Automata (Gallery 2.1). This sys-
tem was so named because the state of a bond changes in re-
sponse to the proximity of other bonding sites according to a 
transition table like those found in Cellular Automata – we 
cover Cellular Automata later.

Two-dimensional artificial chemistries are also useful, their 
elements might be polygons or line segments with bonding 

43

These structures are generated 
using an artificial chemistry, 
Self-Organizing Cellular Auto-
mata, by the author.  Here, 
short, stable chains and trian-
gles self-assembled under condi-
tions where green and blue 
bonding sites at the ends of oth-
erwise inert polyhedra attract 
one another.

A long but tangled self-
assembled chain. This is gener-
ated under the same conditions 
as the previous formations with 
green and blue bonding sites at-
tractive to one another but in 
this case, like colours also 
slightly repel one another.

Untangled self-assembled 
chains. These are generated un-
der the same conditions as the 
previous formations with green 
and blue bonding sites attrac-
tive to one another but in this 
case, like colours repel one an-
other relatively strongly.

A self-assembled cluster. These 
structures self-assemble when 
green sites are set to attract their 
own kind and blue sites to repel 
their own kind.



sites at their vertices or along 
edges. In some artificial 
chemistries alphanumeric 
characters, binary digits or 
other symbols take the place 
of atoms. These can be com-
bined, transformed and disso-
ciated based on simple deter-
ministic or probabilistic 
rules. Their motion might not 
be explicitly modelled, in-
stead each could be probabil-
istically assigned a set of 
neighbours for a particular 
step of time in a simulation. 
The set of neighbours might 

include all other molecules in the simulation, or a subset 
based on their position on a lattice. Many simulations have 
such stochastic components.

Not all artificial chemistries explicitly model individual atoms 
and molecules. It is also possible to represent the presence of 
a particular substance in a simulation by its concentration. 
The simulation then takes the form of a set of equations de-
scribing the rates at which chemicals are converted from one 
type to another.

Like the Miller-Urey experiment, artificial chemistries might 
tell us how likely it is that certain biologically relevant (real) 
molecules appear under particular conditions. But very often 

the idea is to abstract away most of the detail of real biochem-
istry, reducing it to a comparatively simple computational sys-
tem. In this way general principles of self-assembly, self-
organisation, self-maintenance, self-replication and the emer-
gence of complexity from basic building blocks can be studied, 
without reference to particular biomolecules.

Fact free science

Not all researchers are convinced by this abstract approach in 
Artificial Chemistry, or in Artificial Life broadly. Artificial 
Chemistry seems to some to be as bizarre and perhaps as 
worthless as alchemy is now perceived to be. Artificial Life 
practitioners have been subject to the accusation (originally 
made by biologist John Maynard Smith) that they are conduct-
ing “fact free science”. Such criticism reminds us of the need 
to check our assumptions and validate our models, before 
drawing conclusions about (biological) reality based on (Artifi-
cial Life) simulations. A properly validated simulation is a 
powerful tool for understanding the real world, computational 
chemists know this well. But in and of themselves, abstract 
computational systems are interesting, regardless of their ties 
to the physicochemical world. New, artificial systems can be 
worthy of study in their own right. They make their own facts.

The abstract study of “self-governed” processes is particularly 
important in light of Maturana and Varela’s focus on the self-
production of living machines. But self-assembly and self-
organising processes are also important because they provide 
the only mechanism by which nature can create complexity be-
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Clusters generated by fracture 
of oversize green-centered clus-
ters. The red-centered clusters 
were previously a single green-
centered cluster. When a thresh-
old of self-attracting green is 
surpassed within a structure, a 
transition of the sites occurs 
from green to red causing a split 
in the cluster.



fore an evolutionary process commences. The processes must 
be understood in order to explain how the first replicating 
molecules capable of evolution came into being. This is an im-
portant reason for studying artificial chemistries.

A later section of this text is completely devoted to virtual eco-
systems that model interactions between indivisible organ-
isms, and some of the research questions they can be used to 
tackle. Organisms in such simulations are atomic, hard-coded 
units of the simulation rather than phenomena emergent 
from chemistry. But in the current chapter we will describe 
models to demonstrate how an artificial chemistry might in 
fact build organisms from lower level building blocks.

Further reading

Miller, S. L. (1953). "A production of amino acids under possi-
ble primitive Earth conditions." Science 117(3046): 528-529.

Dittrich, P., J. Ziegler and W. Banzhaf (2001). "Artificial 
Chemistries – A Review." Artificial Life 7(3): 225-276.

Dorin, A. (1998). "Physically Based, Self-Organizing Cellular 
Automata", in Multi-Agent Systems - Theories, Languages 
and Applications, Zhang C., Lukose D. (eds), LNAI 1544, 
Springer-Verlag, pp. 74-87.

Fontana, W. (1990). “Algorithmic Chemistry: A Model for 
Functional Self-Organization”, SFI working paper, Santa Fe 
Institute. 1990-011. Technical report LA-UR-90-1959.
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TOPICS

1. Space and atoms

2. The simulation time step

3. Chemical reactions

4. Organisms

SECTION 2

Chemistry before evolution
The defining properties of ecosystems are the exchanges and 
transformations of energy and matter between (and by) proc-
esses in the abiotic environment and the species inhabiting it. 
Likewise we have noted that the transformation of molecules 
within organism bodies is one of their defining properties. 
Therefore there are sound reasons for wanting to build an eco-
system model from the chemical level up, even though not all 
research questions demand it. In principle at least this task 
should be achievable. In practice, it is quite difficult.

Here we will describe one artificial chemistry system in detail 
to illustrate an approach to their construction, and to demon-
strate that something like the kinds of interactions between 
organisms seen in nature might be realised bottom-up. In this 
system, designed by the author with computer scientist and 
philosopher Kevin Korb, we take a mid-level model of chemis-
try concerned with energy acquisition, storage and transforma-
tion into biomass. The model does not implement self-
reproduction, evolution or the self-assembly of organisms. It 
is much simpler than that. Still, it demonstrates the feasibility 
of synthesising an entire ecosystem of interacting organisms, 
and their abiotic environment, from the same basic building 
blocks.

Space and atoms

The artificial chemistry is based upon a set of two dimen-
sional, mobile, nonintersecting, square “atoms” on a lattice. 
Atoms may bond to neighbours in their von Neumann 
neighbourhood on the lattice by sharing virtual electrons 
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A screenshot from an artificial chemistry capable of supporting simple 
virtual ecosystems. Coloured squares represent atoms distributed on a 
grid. The cyan lines between them indicate chemical bonds. Squares 
filled with red act as enzymes to break chemical bonds. Squares filled 
with green act as a chlorophyll-like catalyst. Details of this model are 
described in the current section.



across their edges according to the rules of a virtual chemistry 
of covalent bonding: Each atom type has a set of electrons in 
one or more shells. The number of electrons and the fullness 
of an atom’s outer shell determine the bonds in which the 
atom can participate. In all cases, some energy threshold is re-
quired to initiate (or break) a bond, and the result of bonding 
(or breaking a bond) is either the capture of an amount of en-
ergy or its release. Additionally, for each type of bond, parame-
ters of the simulation determine the probability of specific 
bonds forming or breaking given the availability of the requi-
site energy.

A catalyst is said to be present at a reaction site when an 
atom involved in the reaction neighbours an atom of a desig-
nated catalyst-type. To support the existence of the virtual or-
ganisms that are intended to appear, four types of catalyst are 
required. A chlorophyll-like catalyst is needed that, in the pres-
ence of “sunlight” (described shortly), manufactures a com-
plex molecule equivalent to sugar. An enzyme that breaks 
down this sugar, releasing the chemical energy stored in its 
bond is also needed. For simplicity and clarity, separate en-
zymes that decompose “organic” bonds that are not sugar and 
“inorganic” bonds are included too.

Energy that is released during a reaction is distributed 
throughout any continuous atomic structure that contacts di-
rectly or indirectly (through intermediate neighbours) the re-
action site. This energy is available for making or breaking 
chemical bonds by any atoms that receive it.

The simulation time step

The simulation progresses in discrete time-steps. At each step, 
for each atom, it must be determined stochastically whether 
each bond should break or join based on the site-types, the 
presence of catalysts, the availability of energy and the bond-
ing probabilities. Energy released during a reaction is totalled 
in each neighbourhood of connected atoms for use in that 
time-step by reactions that absorb energy. A reaction that re-
quires energy to be expended can only occur if the neighbour-
hood of atoms involved has accumulated sufficient energy. Re-
actions occur in random order, consuming or contributing en-
ergy to and from the total amount available in their neighbour-
hood. A reaction that requires more energy than is available 
cannot proceed.

Energy released from a chemical bond must be used in that 
time-step or it is released in non-recoverable form. The only 
way energy can be stored is in complex molecules.

Sunlight is incident on all atoms at a rate governed by a pa-
rameterized sine function for use by the chlorophyll-like cata-
lyst during photosynthesis.

In addition to stochastically determined bonding, within a 
time-step atoms may be moved one square on the grid in a ran-
dom direction or they may remain stationary. Bonded atoms 
(forming molecules) are moved identically to preserve their 
topology. Collisions are not permitted.
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Chemical reactions

This simple model supports the existence of autotrophs (crea-
tures that make their own food by harnessing energy from the 
sun or existing chemicals) and heterotrophs (creatures that 
eat other creatures), including decomposers.

The abiotic environment is made of the same molecules and 
atoms as the simulation’s organisms. The bond structure and 
context enables us to label molecules as inorganic or organic, 
as components of a metabolic system or as abiotic. Thus the 
“abiotic environment” is just the set of atoms and molecules 
that are not bonded to a structure identified as an organism.

The abiotic environment consists of virtual atoms from the set 
{A, B, C, O}. Atoms may also be enzymes for sugar decomposi-
tion (break A-B bonds), biomass decomposition (break C-C 
bonds) or chlorophyll for sugar construction (make A-B 
bonds, break A-O and B-O bonds). The probabilities for these 
significant reactions are given in the included reaction table. 

Bond energy (right hand column of the table) must be sup-
plied to break a specified bond and is released when the bond 
is made. Negative bond energy values indicate a release of en-
ergy when a bond breaks and energy must be supplied to 
make these bonds.

In order to sustain the required organism forms, several reac-
tions must be supported. These are illustrated below. Only 
bonding possibilities of relevance to the discussion are shown, 
even though other bonds may also be supported. A line be-
tween tiles in the diagrams indicates a bond between the at-
oms they represent. Catalysts are labelled Enz (enzyme) or 
more specifically Chl (chlorophyll).

Photosynthesis constructs sugar molecules from water and 
carbon dioxide, releasing oxygen and water. It requires the 
presence of the catalyst chlorophyll and incident sunlight. In 
our virtual chemistry the reaction is represented abstractly as:

AO + BO —(chlorophyll & sunlight)⟶ AB + 2O
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BOND MAKE PROBABILITY BREAK PROBABILITY MAKE PROBABILITY 
(CATALYST)

BREAK PROBABILITY 
(CATALYST)

BOND 
ENERGY

A-B low low high (chl) high (enzAB) -high

C-C moderate low high (enzCC) -low

A-O high low high (chl, enzAO) +low

B-O high low high (chl, enzBO) +low

C-O low moderate high (enzCC) +low



Reactants A and B may be presented to the catalyst bonded to 
O atoms or free. The process of photosynthesis may be repre-
sented in many potential atom arrangements.

A B O

Chl

SunlightO

A B O

Chl

O

Respiration. Real sugar molecules may be broken down in a 
process of respiration to release energy. The process utilizes 
oxygen and an enzyme to break down the sugar. Carbon diox-
ide and water are released. In our virtual chemistry the reac-
tion is represented abstractly:

O + AB —(enzyme)⟶ A + BO + energy

The process of respiration may be represented in many poten-
tial atom arrangements.

O

Enz

Energy

Enz

A B A B O

Biosynthesis. Organisms are able to add to their biomass by 
constructing bio-molecules from those they ingest. Growth oc-
curs when a structure binds to atoms employing a reaction 
that requires energy. These bonds would not normally form in 
the absence of the energy required to create them (or the pres-
ence of a suitable catalyst). Such bonds may also break down 
spontaneously with probabilities as indicated in the reaction 
table. Hence an “organic” structure formed of these bonds 
must produce sufficient energy to sustain itself against natural 
decay by rebuilding broken bonds and by adding new material 
in a breach.

When an organic bond is broken energy is released into the 
neighbouring structure. The amount that may be captured by 
a particular neighbouring atom will be insufficient to remake 
the bond instantaneously without an additional energy 
source. In our virtual chemistry the biosynthesis reaction is 
represented abstractly:

C + C —(energy)⟶ C2

The process of biosynthesis may be represented in many po-
tential atom arrangements.

C

Energy

C

CC C

C
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Organisms

Many different atom configurations could conceivably fill the 
role of organisms in a virtual ecosystem built from these at-
oms. For example, a chemosynthetic autotroph that generates 
its energy from inorganic molecules without the need for sun-
light might be designed. In the chemical system described, 
one way to achieve this is by having a configuration that ob-
tains free O atoms and binds them to available A or B atoms. 
Given the natural affinity of A and B for O in the model, suit-
able atoms may be scarce unless a catalyst is employed to split 
A-O and B-O. The elements may then rejoin against the sur-
face of the structure. In this case almost any structure contain-
ing a suitable catalyst on its surface would suffice in the role. 

For illustrative purposes, two other organisms are shown and 
explained (see figure captions) here.

Photosynthetic autotroph. This photosynthetic autotroph har-
nesses chlorophyll to manufacture sugar. It also holds an en-
zyme to decompose sugar and a vacuole (cavity) in which to 
manufacture and store it. Countless variations on the design 
are possible. They needn’t capture the sugar molecules as long 
as they maintain sufficient sugar concentration in their vicin-
ity.

In the design presented, one internal wall of the vacuole an-
chors chlorophyll. Any A-O and B-O molecules that contact it 
will be converted into sugar but remain trapped. By chance, 
an A-B molecule may later touch the opposite enzyme-laced 

wall where it will participate in respiration, releasing energy 
through the structure and allowing biosynthesis.

Chl

Chl

Enz

Enz

AC

C

C

CB

A

OB

A

O

Molecules to form
sugar by photosynthesis

Molecules to release
energy in respiration

Molecule available
for biosynthesis

CCCCCCC

C

C

C

C

C

C

C

C

C

CC

C

Enz
C

C

C

Decomposer. A heterotroph in the present model could break 
down A-B sugars produced by other organisms using an en-
zyme. Alternatively, a heterotroph can act as a decomposer (il-
lustrated) if it possesses a catalyst to break down the C-C 
bonds of another structure. This catalyst must be isolated 
from its own organic C-C structure. One way to achieve this is 
with an intermediate O atom bonded to C with the aid of a 
catalyst.
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A

C

Enz

A
Enz

O

C

C C

C

C

Molecule to release
energy by decomposition

Molecule available
for biosynthesis

Summary

This simple virtual chemistry permits many types of interac-
tion to occur between its organisms, but it lacks the self-
organising forces that automatically generate interesting struc-
tures, everything in this model must be specified manually. 
The simulation is also unhelpful for the study of evolutionary 
processes since it is limited by its present lack of a mechanism 
for encoding reproduction with variation. Hence, while it is a 
useful demonstration of the possibilities for virtual ecosys-
tems built using artificial chemistry, it really only takes an en-
ticing first step. Higher level simulations that abstract away 
some of the atom-level detail in the model just described, 
while adding facilities for reproduction and evolution, have 
also been constructed. Some of these, including Tierra, a 
world built of atomic programming-language instructions, are 
described in a later section on virtual ecosystems. The next sec-
tion describes an artificial chemistry with the physicality of 
the tile-based model just explored, but this is linked to a 

mechanism for transferral of information between elements to 
allow evolutionary processes to occur.

Further reading

Dorin, A. and K. Korb (2007). "Building Artificial Ecosystems 
from Artificial Chemistry", 9th European Conference on Artifi-
cial Life, Lisbon, Springer-Verlag, pp. 103-112.
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TOPICS

1. Why build imaginary chemistries?

2. Swarm chemistry

3. Reactions

4. Evolution

SECTION 3

Imaginary chemistries
Why build imaginary chemistries? 

Artificial Chemistry, as it is practiced within Artificial Life, is 
quite different to that practiced within Computational Chemis-
try. The computational chemist uses tools such as Molecular 
Dynamics simulation to understand and predict how real at-
oms and molecules will behave under particular conditions. 
The Artificial Life researcher on the other hand, is free to ex-
periment with invented interaction rules and novel pseudo-
molecular behaviours. The artificial chemistry described in 
the previous section is loosely based on the real biological 
processes of energy acquisition, its storage and release, and 
the construction of biomass. But rebukes about “fact-free sci-
ence” aside, artificial chemistries allow us to study the general 
principles of dynamical system construction beyond what we 
find in nature. With general knowledge gleaned from imagi-
nary chemistries, we may learn to synthesise new systems that 
self-assemble into complex structures and repair damage to 
themselves, we may derive new medical technologies that as-
sist an organism to maintain itself when injured, to repel the 
invasion of bacteria, eliminate a viral infection or adapt 
deeply and dynamically to variations in its environment.

Self-assembly, self-repair and self-(re)organisation are valu-
able engineering principles for the creation of new technology. 
The Swarm Chemistries originated by Hiroki Sayama occupy 
this experimental space. Despite their apparent simplicity, 
they are capable of fascinating dynamic behaviour that may 
one day inform new technological innovations beyond the 

52

Some cel l - l ike s tructures 
formed within an evolving 
Swarm Chemistry simulation. 
© Image copyright Hiroki 
Sayama. Used with permission.



screen. In particular the mechanisms of Swarm Chemistry sug-
gest coordination strategies for swarms of mobile robots.

What is Swarm Chemistry?

Swarm Chemistry is only loosely speaking an artificial chemis-
try. Its elements behave more like the mobile boids of Rey-
nolds’ flocking software, a system we describe in detail later. 
Each element can perceive others in its vicinity and responds 
to their presence. Each element can move through a continu-
ous 2 or 3D space with its own set of parameters governing 
steering towards or away from other elements, alignment with 
the direction of travel of neighbours, avoidance of collisions 
with them or just random wandering. The parameters are 
specified as: a radius of local perception, a default speed, a 

maximum speed, the 
strengths of cohesive, align-
ment and separating forces be-
tween an element and its 
neighbours, the probability of 
random steering and the ten-
dency to travel at the default 
speed.

A swarm “species” consists of 
elements with identical move-
ment parameters. The interest-
ing behaviours Swarm Chemis-
try generates arise when sev-
eral species mix in a single 

space. This mixing, and the ensuing emergent behaviour, is 
termed a “reaction” within the model. Parameters for many 
phenomena have been successfully discovered by the alche-
mists (users) of the system.

Reactions

Spontaneous segregation appears readily within the Swarm 
Chemistry framework. Agents spontaneously cluster with oth-
ers of the same species when the differences between species’ 
parameters ensures that the local environmental conditions 
each generates and gravitates towards differs.

Reactions may produce macro-level multi-species movements 
that arise when one species tends to want to approach another 
while the parameters of the species being approached have it 
preferring to avoid the encounter. The net result is a mass of 
particles of the two species chasing each other around the 
screen while tending to stay in proximity with their own kind.

In some cases, one chemical species forms a dynamic mem-
brane around a central core of members of a different species. 
Sometimes the confined species rotates or oscillates en masse 
within its container.

Evolution

An inheritance mechanism has been encoded within later ver-
sions of Swarm Chemistry. Active elements in this version of 
the software contain multiple sets of parameters, one of which 
dictates element behaviour at any time. Upon collision with 
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Organism-like forms emerge 
from an evolving swarm chemis-
try simulation. © Copyright Hi-
roki Sayama. Used with permis-
sion.



another element, the parameter sets of one element are trans-
ferred to the other participant in the collision, possibly with 
some mutation that changes the values being copied. One of 
the received parameter sets is randomly chosen to become ac-
tive within the target element that now enacts its motion rules 
based on this. The transfer of information between elements 
allows an evolutionary process to become established. Sayama 
has discovered the emergence of collections of particles capa-
ble of behaviours visually and conceptually reminiscent of re-
production and various ecological phenomena.

Summary

Swarm Chemistry and the tile-based ecosystem given previ-
ously have been selected for discussion because their out-
comes can be interpreted visually. It is therefore hoped that 
they serve as an accessible introduction to Artificial Chemistry 
and its potential to generate complete ecosystems. There are 
many other ventures in this field worth studying, not all of 
them visual. Two different systems of note include Wolfgang 
Banzhaf’s self-organising binary strings (and later work he did 
with Peter Dittrich), and Tim Hutton’s self-reproducing, 
membrane-enclosed cells.

Artificial Chemistry encompasses a broad range of ap-
proaches. As can be seen from the examples given, these mod-
els are often described in terms of metaphors adopted not just 
from Chemistry but from as far afield as flocking, cellular auto-
mata and ecosystem modelling. Seemingly any system of inter-
acting dynamic components might be classified under the ban-

ner of Artificial Chemistry! Since even completely imaginary 
chemistries can be informative, as long as the metaphors used 
are helpful to describe or explain observations of these dy-
namical systems, and their authors are clear that these are 
metaphors only, there is, in this author’s opinion, no harm in 
using them.

Further reading

Sayama, H. (2009). "Swarm Chemistry." Artificial Life 15(1): 
105-114.

Sayama, H. (2011). Seeking open-ended evolution in Swarm 
Chemistry, In 2011 IEEE Symposium on Artificial Life. Neha-
niv, et al (eds). Paris, IEEE: 186-193.

Banzhaf, W. (1994). Self-organization in a system of binary 
strings. Artificial Life IV, Proceedings of the Fourth Interna-
tional Workshop on the Synthesis and Simulation of Living 
Systems. Brooks and Maes (eds), MIT Press: 109-118.

Dittrich, P. and W. Banzhaf (1998). "Self-Evolution in a Con-
structive Binary String System." Artificial Life 4(2): 203-220.

Hutton, T. J. (2007). "Evolvable Self-Reproducing Cells in a 
Two-Dimensional Artificial Chemistry." Artificial Life 13(1): 
11-30.
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CHAPTER 3

Artificial Cells

The interaction between individual 
biological cells gives rise to complete 

multicellular organisms. In this chapter 
we explore software systems that 

approximate the interaction of simple 
cell-like entities. Despite their simplicity, 

these are capable of generating 
surprisingly complex emergent patterns.  



TOPICS

1. What are cellular automata?

2. The Game of Life

3. Langton’s Loop

4. Applications of cellular automata

SECTION 1

Cellular Automata
What are cellular automata?

Cellular automata (CA) are finite state machines (FSMs) ar-
ranged on an infinite grid. Each machine (automaton) can be 

thought of as playing the role of a 
single cell, sometimes alone, some-
times as part of a multicellular 
structure. Each cell in the grid is 
connected directly to the FSM cells 
in neighbouring cells. All FSM 
states are updated in parallel at dis-
crete time intervals. The transition 
each FSM makes at a time step is 
usually determined by a system-
wide transition table. But the condi-
tions that trigger an individual 
cell’s change are based only on the 
cell’s current state and the state of 
the neighbours to which it is di-
rectly connected. Some examples 
will be given below.

CAs are particularly interesting be-
cause, even though each FSM in 
the grid is connected only to its lo-
cal neighbourhood, if the transition 
rules are carefully constructed, com-
plex, dynamic, global behaviour 
nevertheless emerges across large 
regions of the grid as the FSM 
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In this figure, a grid of 
FSMs is shown as a two 
dimensional array of 
squares. This is the usual 
way to visualise a CA. 
Each square in the figure, 
which shows a two-state 
CA, is coloured grey to in-
dicate the FSM at that loca-
tion is in the on state, or 
white to indicate the FSM 
at that location is in the 
off (quiescent) state.

The cell ⊗ is connected to 
cells 1-8 in its Moore 
neighbourhood. An alter-
native neighbourhood that 
is sometimes used in CAs 
is the von Neumann neigh-
bourhood. For the cell 
marked ⊗ this includes 
only cells 2, 4, 5 and 7.

1 2 3

4 5

6 7 8

⊗

Cellular automata are convenient computational platforms for study-
ing the emergence of large-scale patterns from local interactions. Here 
the patterns are visualised as coloured pixels in an array. Each pixel’s 
colour represents the state of a machine connected to its neighbours in 
the grid. Hence, patches of colour indicate machines in identical states. 
Different rules for how machines change state will give rise to different 
kinds of large-scale patterns over time.



states are updated. In fact, CAs are a quintessential example 
of emergence which, as already noted, is an important theme 
for contemporary Artificial Life.

The CA was introduced in the 1950s by John von Neumann at 
a suggestion from his friend, mathematician Stanislaw Ulam, 
concerning how to construct a self-reproducing computer pro-
gram. He wished to know, “What kind of logical organization 
is sufficient for an automaton to be able to reproduce itself?”

This biological problem’s solution has largely been beyond 
technological Artificial Life. But if a self-reproducing algo-
rithm could be identified, then the process of self-replication 
could be shown to be possible within the world of formal ma-
chines. Prior to introducing the problem to the abstract, for-
mal world of computation via CAs, von Neumann had envis-

aged a “kinematic” self-reproducing machine. The complexi-
ties of engineering such a system, and the lack of interest the 
practical problems held for von Neumann, meant the idea was 
superseded. Arguably the CA was his attempt to see a self-
reproducing system realised in an environment where the 
problems to be solved were interesting to von Neumann the 
engineer, mathematician and theoretical computer scientist.

The formation of large-scale patterns (including self-
reproducing ones) on a CA grid depends on the transition 
rules for the cells. Typically all cells in a CA grid share the 
same transition rule set. There must be a valid transition for 
each of the possible combinations of the current state of each 
FSM and the state of all its connected neighbours for the CA 
to be valid. CAs usually have a quiescent state that is some-
times referred to as a blank state. A cell in this state will re-
main in it if all of its neighbouring cells are also quiescent.

Apart from self-reproduction, emergent CA patterns can in-
clude various patches of same-state machines: spirals, spots, 
splotches, waves, circles, squares and diamonds. These are of-
ten dynamic. Their locations and boundaries change with 
every passing time step as cell states are updated. But more in-
terestingly, dynamic structures that maintain a coherent, rec-
ognisable form as they drift across the CA grid can also ap-
pear. These cyclic moving patterns are called gliders. Struc-
tures that repeatedly emit a stream of gliders can also be de-
vised. These are called glider guns.
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Here are some patterns from the popular Game of Life CA. The tran-
sition rules are given at the right of the figure. Note the two gliders 
shown in the figure also.

Glider moving
North-East

A cell in the ON state

First described by Schroeppel and Buckingham, the 
AK47 pattern launches gliders in alternate directions.

1 2 3

4 5

6 7 8

if (cell is OFF)
{
      if(exactly 3 neighbours are ON) cell turns ON
      else cell stays OFF
}

if (cell is ON)
{
      if (2 or 3 neighbours are ON) cell stays ON
      else cell turns OFF 
}

The transition rules dictate each cell's state at the next 
time step based on its current state and the current 
state of its neighbours:

A cell in the OFF state with its eight neighbours 
labelled. Five of these neighbours are ON. The 
transition rules below therefore indicate that this cell 
will remain OFF at the next time step.

Glider moving
South-West



The properties of dynamical systems such as CAs have been 
loosely characterized by referring to the long term behaviour 
of the system:

• Limit Point – system halts
• Limit Cycle – system falls into an infinite loop
• Strange Attractor – system behaves chaotically forever

Computer scientist Stephen Wolfram has carefully studied 1D 
cellular automata in particular. These consist of a single row 
of connected finite state machines. A convenient way to visual-
ise their dynamics is as a vertical sequence. Each row is set be-
neath its predecessors to depict the progression of all FSM 
states.

To relate the behaviour of CAs to the general principles of dy-
namical systems outlined above, Wolfram has classified their 
behaviour in four classes as follows.

1. Reaches a homogeneous state (limit point)
2. Forms simple, separated, periodic structures (limit cycle)
3. Produces chaotic, aperiodic patterns (strange attractors)
4. Produces complex patterns of localised structures

We might wonder in what 
sense this last type of pat-
tern is a form of digital artifi-
cial life. Certainly the same 
description seems to apply 
to organisms.

The Game of Life [Try the interactive widget online]

The Game of Life is a CA rule set designed by mathematician 
John H. Conway and made popular in the early 1970s by Mar-
tin Gardner’s Scientific American series Mathematical 
Games. Arguably this is the most famous CA of all. 

The Game of Life is a binary CA; each FSM can be in one of 
only two states. The CA employs the Moore neighbour-
hood. The system’s rules are very simple.
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time = 0
randomly initialised bit pattern

time

This 1D CA shows progression 
typical of Wolfram’s class 3 
d y n a m i c a l s y s t e m s –  i t 
produces chaotic, aperiodic 
patterns.

This 1D CA shows progression 
typical of Wolfram’s class 4 dy-
namical systems – it produces 
complex localised structures 
that are neither completely 
chaotic, nor completely peri-
odic.

The book, Cellular Automata: A 
Discrete Universe, by Andrew 
Ilachinski (World Scientific, 
2001), analyses the behaviour of 
CAs in some detail and assesses 
the value of Wolfram’s 
classifications.

http://www.csse.monash.edu.au/~aland/BiologicalBits/Life.wdgt/
http://www.csse.monash.edu.au/~aland/BiologicalBits/Life.wdgt/


Surprisingly many fascinating, dynamic patterns can be pro-
duced from this simple rule set. A complete Turing Machine 
has even been constructed by Paul Rendell entirely using the 
Game of Life: gliders carry messages from one location to an-
other as the Turing Machine changes state or reads and writes 
to its cellular tape.

Langton’s Loop
Chris Langton, organiser of 
the first conferences specifi-
cally focussed on the field he 
dubbed Artificial Life, was a 
researcher into CAs. In 1984 
he devised his own self-
reproducing machine, Lang-
ton’s Loop. Implicitly, the 
goal of such a system for 
Langton, like von Neumann, 
was for a multi-celled soft-

ware structure to self-reproduce without explicitly calling a 
high-level method that adopts a global perspective of the op-
eration. Hence the structure’s self-reproduction must itself be 
emergent from the interactions of its components.

One way to achieve this would be to have a structure of two 
neighbouring cells, each which causes a quiescent neighbour-
ing cell to adopt the same state. In this way, each active cell 
would independently make another. And then all four active 
cells could make eight, and so on. But this seems somehow 
trivial and boring. As problematic as it is to define clearly, von 
Neumann, and those who have taken up the gauntlet he threw 
down, have sought something “interesting”.

Applications of cellular automata

CAs are more than fancy computer games. Some researchers 
have gone so far as to wonder if the entire universe is a kind of 

Rules for the Game of Life

if (cell is OFF)
      if (exactly 3 neighbours are ON) cell turns ON
      else cell stays OFF

if (cell is ON)
      if (2 or 3 neighbours are ON) cell stays ON
      else cell turns OFF 
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Langton's Loop from a simula-
tion written by Tomoaki Suzudo.

A snapshot of the Game of Life.

http://www.apple.com/
http://www.apple.com/


CA. CAs also serve as a platform for philosophical thought ex-
periments around the idea of emergence. Practical applica-
tions for the grid-based simulation method have arisen too. 
For example, cells can be used to represent quadrants of a 
landscape populated with forest, grassland and fire-breaks. 
Bushfire movements can then be simulated on the grid using 
transition rules such as one for cells that transition from un-
burnt, to burning, to consumed grass. A grass cell begins this 
sequence of transitions when a neighbouring cell enters the 
burning state. Other CA applications include understanding 
fluid dynamics, vehicular traffic or even modelling the interac-
tions typical of complete natural ecosystems.

Further reading

Gardner, M. (1970). "The fantastic combinations of John Con-
way's new solitaire game Life." Scientific American 223: pp. 
120-123.

Langton, C. G. (1984). "Self-reproduction in Cellular Auto-
mata." Physica D: Nonlinear Phenomena 10(1-2), pp. 135-
144.

Langton, C. G. (1986). "Studying Artificial Life with Cellular 
Automata." Physica D : Nonlinear Phenomena 22(1-3), pp. 
120-149.

Wolfram, S. (1984). "Universality and Complexity in Cellular 
Automata." Physica 10D: 1-35.

60



TOPICS

1. What is a reaction-diffusion system?

2. Turing’s reaction-diffusion system

3. Applications

SECTION 2

Reaction-Diffusion systems
What is a reaction-diffusion system?

In a reaction-diffusion (RD) 
system, chemicals are depos-
ited onto a surface and diffuse 
across it over time. Might such 
systems be responsible for 
forming patterns during the de-
velopment of an embryo. 
How? Naively we might expect 
that chemicals would always 
spread evenly across a surface 
until their concentration was 
uniform. However in RD sys-
tems uniformity is not neces-
sarily a stable state, even when 
the system seems homogene-
ous to begin with. Small ran-
dom variations can cause quite 
unexpected patterns to 
emerge.

The chemicals that diffuse 
through organisms are called 
morphogens after their pro-
posed role in biological morphogenesis. In 1952 the famous 
computer scientist Alan Turing, in what can only be consid-
ered a landmark paper, proposed that such systems could be 
modelled using partial differential equations. He felt RD sys-
tems might explain the development of whorled leaves, the 
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Reaction-diffusion systems generate patterns reminiscent of those 
found throughout biology, especially on animals. In simulation, the 
patterns are usually rendered as coloured pixels in an array. Each 
pixel’s colour represents the concentration of chemicals at its location 
in the grid.

Some patterns that seem typical 
of RD systems: a zebra’s stripes, 
a giraffe’s patches, fish mark-
ings and the spots of a leopard.



pattern of tentacles on Hydra, gastrulation during the develop-
ment of an embryo, dappled pattern formation and phyllo-
taxis.

A simple RD system

A simple RD system like those described by Turing has two 
chemicals, an activator with concentration at any point desig-
nated A, and an inhibitor of concentration I. These chemicals 
diffuse through space at different rates. Their change in con-
centration over time is described according to the following 
equations to be explained in plain English shortly.

∂A/∂t  = F (A, I) + DA ∇2 A

∂I/∂t   = G (A, I) + DI ∇2 I

The first equation describes the rate of change of concentra-
tion A, ∂A/∂t. At any point this is influenced by: F(A, I) which 
is a function F of the current concentrations A and I at that 
point; and by a measure of the rate of diffusion of A, the diffu-
sion coefficient DA; and by a measure of the concentration gra-
dient at that point captured in the ∇2 term. The second equa-
tion parallels the first but for the concentration of the inhibi-
tor.

Above all else, it should be clear from this description that the 
two chemicals interact with one another through functions F 
and G.
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Alan Turing (1912-1954) was a pioneer, not just in computational 
models of morphogenesis, but in the theory of computation. He devel-
oped the algorithm concept formally, the idea of computation and an 
abstract, general purpose computing machine called the Turing Ma-
chine. Turing was also responsible for developing the Turing Test, a 
test of a machine intelligence deeply relevant for the philosophy and 
practice of the field of Artificial Intelligence.

Image: Alan Turing, by AIkon-1, a research project into art comput-
ing by Patrick Tresset and Frederic Fol Leymarie, hosted at Gold-
smiths, University of London : www.aikon-gold.com. This portrait 
was drawn by a robot, AIkon-1, from a photograph. Used with permis-
sion.



It turns out to be possible to simulate the movement of chemi-
cals using these equations on a grid. Changes in concentration 
within individual grid cells are computed by reference to the 
current concentrations in the cell, those of the neighbours, 
and according to the other terms in the equations given above. 
Here are the equations again, this time in terms of a discrete 
grid.

∆Ai,j  = s(16-Ai,j Ii,j) + DA (Ai+1,j + Ai-1,j + Ai,j+1 + Ai,j-1 - 4Ai,j)

∆Ii,j  = s(Ai,j Ii,j - Ii,j  - !i,j ) + DI (Ii+1,j + Ii-1,j + Ii,j+1 + Ii,j-1 - 4Ii,j)

The first equation states that the change of concentration of A 
at grid cell (i,j) is calculated by multiplying the constant s by a 
value computed by subtracting from 16 the current concentra-
tions A and I at (i,j). This term corresponds to F(A,I) in the 
original equation given. The second term maintains the diffu-
sion coefficient DA from before and computes the Laplacian 

∇2 by summing the concentration A in the von Neumann 
neighbourhood of cell (i,j) – i.e. in its neighbours to the N, E, 
S and W – and subtracting 4 times the concentration at (i,j).

The second equation parallels the first but contains a function 
G different to F of the first equation. This function introduces  
!, a random value at every cell (i,j) that acts as a kind of seed 
over which irregularities in the pattern can form. This pertur-
bation to homogeneity is introduced into the digital world to 
mimic nature’s natural variation.

This basic RD system is capable of generating a variety of pat-
terns as it stands. A visualisation of the grid consists in repre-

senting the concentration of the 
chemicals by colouring pixels. By vary-
ing the value of s different visual pat-
terns emerge. Additionally, the sys-
tem can be altered by having multiple 
diffusing and reacting chemicals. It is 
also productive to have one RD sys-
tem lay down an initial pattern and 
then to run another simulation over 
the top of the first, using the first pat-
tern as a non-random seed. Or part of 
the initial pattern can be frozen and 
the second simulation can be run in 
the unfrozen portion. It is even possi-
ble to use the initial pattern to non-
uniformly vary the rate of diffusion of 
chemicals in the second simulation.

63

Patterns generated from a simulation by Christopher G. Jennings.

Reticulated (webbed) 
pattern on a giraffe. © 
Greg Turk 1991. Used 
with permission.



Applications of RD systems

The complex patterns RD sys-
tems produce have made them 
excellent sources of natural-
looking textures for 3D graph-
ics. In 1991, Greg Turk ran the 
RD simulations directly over 
the polygonal surfaces of 3D 
geometry. In this way he was 
able to generate coat patterns 
like those found on zebras and 
giraffes that were automati-
cally tailored to the geometry 
of his models - they were generated directly over their sur-
faces. RD patterns have also been used as the basis for proce-
dural techniques that generate 3D models. Where chemical 
concentrations reach a threshold for instance, new tentacles 
on a geometric structure supporting the simulation can be gen-
erated. By simulating the emission of chemicals from particle-
like cells and the reaction of these particle-like cells to mor-
phogens, it is even possible to generate two or three dimen-
sional models from virtual cells – the subject of the next sec-
tion.

Further reading

Prusinkiewicz, P. (1993). "Visual Models of Morphogenesis." 
Artificial Life 1(1-2), pp. 61-74.

Turing A. M. (1952). “The Chemical Basis of Morphogenesis”, 
Philosophical Transactions of the Royal Society of London. Se-
ries B, Biological Sciences, Vol. 237, No. 641, pp. 37-72.

Turk, G. (1991). “Generating Textures on Arbitrary Surfaces 
Using Reaction-Diffusion”, Computer Graphics, Vol. 25, No. 4 
(SIGGRAPH '91), pp. 289-298.

Pseudo Zebra © Greg Turk 1991. 
Used with permission.
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1. The properties of virtual cells

2. Cellular textures

3. Cellular modelling

SECTION 3

Mobile cells
Both reaction-diffusion systems and cellular automata are 
simulations based on cell-like entities in which the neighbour-
hood relationships that govern interactions are fixed and usu-
ally based on a regular grid. This needn’t be the case. It is 
quite possible to simulate mobile cells that interact with one 
another as they come into range – that is, the neighbourhood 
relationships between cells are dynamic. This allows struc-
tures to form and disintegrate, much like they do in artificial 
chemistry simulations. In this case, the interacting elements 
have a behavioural repertoire that usually falls somewhere be-
tween that of the basic building blocks researchers often have 
in mind for artificial chemistry and the complexity associated 
with multicellular organisms. That is, the elements are usually 
designed to replicate a few basic properties typical of single 
cells. These include the ability to:

• deposit chemicals into their environment,
• detect chemicals in their environment,
• move or rotate under their own power,
• adhere to and collide with one another,
• divide / reproduce,
• die
• change their colour, size or appearance.

With these few properties, simulated cells can fulfill a range of 
roles. This section provides an overview of two techniques 
that simulate cells and their high-level behaviour: one for tex-
turing a surface, and the other for defining a dynamic geomet-
ric model.
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2D starfish grown using Ben Porter’s SDS system. 
© Ben Porter 2010. Used with permission.



Cellular textures

The surfaces of organisms are covered with a semi-permeable 
membrane. In the case of multicellular organisms this might 
be an exoskeleton, shell, skin, bark or other protective enclos-
ing layer. The layer might be the substrate on which hairs are 
mounted, or thick fur, scales, thorns, even feathers. By model-
ling a collection of cells on a surface it is possible to produce a 
cellular texture; so named by Kurt Fleischer in 1995. Among 
other applications, Fleischer applied his technique to gener-
ate, disperse and orient 3D macro-structures (e.g. thorns, 
scales and fur) on the surface of larger 3D geometry.

The cellular texture technique 
takes some of its inspiration 
from particle systems since cells 
move, particle-like, across a sur-
face or through space. The tech-
nique adopts ideas from 
reaction-diffusion systems also, 
since the continuous medium 
through which the cells move 
may support the reaction and dif-
fusion of chemicals.

Cells operate under their own 
cell programs. These are sets of 
instructions that govern an indi-
vidual cell’s response to its local 
environmental conditions, in-

cluding the chemical concentrations at its position, and to the 
values of its state variables. In response to its program, a cell 
may perform any of the actions listed in the previous section. 
In this way it is possible to, for example, have cells that move 
to a surface, die if they are too far from one, align themselves 
with a vector field or with their neighbours, find and adhere to 
other cells, or divide until they completely cover a surface. 
Cells might also adjust their size or appearance based on some 
aspect of their environment such as chemical concentrations 
or geometrical properties of the model on which they are situ-
ated.

With these techniques Fleischer generated several natural-
looking macro-structural textures including scales, thorns and 
the fur of a bear. These cellular textures smoothly cover the 
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Scales. The image shows four 
views of a sphere uniformly 
covered in cells that have 
been rendered as scales. The 
cells divided to cover the sur-
face and died if they were 
pushed too far off of it. The 
cells align themselves with 
their neighbours. © Kurt 
Fleischer 1995. Used with per-
mission. 

Varying thorns. This image shows three spheres covered in cells that 
have been rendered as thorns. The thorn geometry is driven by a 
reaction-diffusion system set up by chemicals that are transferred be-
tween cells across contact boundaries. © Kurt Fleischer 1995. Used 
with permission.



surfaces of even complex geometric models because they are 
generated on the geometric surface directly. This is in contrast 
to standard texture mapping techniques which attempt to 
cover a surface with an image that is treated like patterned 
wrapping paper. The standard technique often introduces un-
desirable creases and discontinuities in the surface pattern. 
Cellular texturing does not suffer from this problem.

Cellular modelling

Since biological organisms all consist of one or more cells, it is 
natural to wonder if a model of 3D cellular development 
might be constructed to mimic the growth patterns of real biol-
ogy to produce virtual cellular life. Several projects of this type 
exist under an overarching banner we might think of as cellu-
lar modelling. There are many difficulties to be overcome in 
simulating this kind of development. These include problems 
whose solutions are relatively well understood but neverthe-
less remain practically complex or computationally expensive 
to simulate – such as collision detection and response, friction 
and other physical interactions between 3D cells. Other prob-
lems highlight the current limits to our understanding of biol-
ogy. For instance, how does an organism, using only chemical 
triggering mechanisms, ensure that the right kinds of cell ap-
pear at the right location at the right time during develop-
ment? Inroads have been made into solving these problems. 
In fact, Artificial Life simulations can play a role in assisting 
us to learn about these aspects of biology.

One technique that has been applied to simple 2D and 3D 
cellular-level developmental modelling is L-Systems. It is be-
yond the scope of this book to examine how this technique is 
applied in this context, but we will provide an overview of a 
more recently devised method, the Simplicial Developmental 
System (SDS) by Benjamin Porter.

Organisms are modelled in SDS as a collection of cells repre-
sented by point particles. As we noted was typical for cellular 
systems, the SDS cells may contain chemicals of different con-
centrations that can be produced or destroyed within a cell. 
Also as before, these chemicals can diffuse between neighbour-
ing cells across shared edges. Each SDS cell has a program 
with instructions such as “if my radius is > 2 then divide” or 
“if the concentration of chemical A is less than 0.5 then pro-

Curling Gravity Tetrahedra. This image was produced using the Sim-
plicial Developmental System (SDS), a cellular modelling technique. 
© Ben Porter 2010. Used with permission.
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duce chemical B”. Where the SDS cells differ from those en-
countered earlier in this section is in their physical relation-
ships with one another. Each SDS cell is a point mass con-
nected to other cells via edges and a set of springs arranged to 
form a matrix of tetrahedra – a 3D mass-spring system. A 
spring connects a group of four particles to form a tetrahe-
dron. A group’s springs work to preserve the volume of the 
shape they enclose in the same way a normal spring tries to 
preserve its length.

Further reading

K. W. Fleischer, D. H. Laidlaw, B. L. Currin, A. H. Barr (1995), 
“Cellular Texture Generation” in Proceedings SIGGRAPH '95 
Proceedings of the 22nd annual conference on Computer 
graphics and interactive techniques, ACM New York, NY, 
USA, pp. 239-248.

Porter, B. (2009), "A Developmental System for Organic Form 
Synthesis", Artificial Life: Borrowing from Biology, LNCS 
5865, Springer-Verlag, pp. 136-148.
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A starfish grown using the Simplicial Developmental System 
(SDS) is draped over a rock. © Ben Porter 2010. Used with per-
mission.



CHAPTER 4

Organism Growth

Nature creates complex structures in 
many ways, but arguably the most 

impressive is the development of an 
organism. In this chapter we explore a 

few models of the growth and 
development of plants.



SECTION 1

Diffusion-limited growth
Perhaps the most familiar form of growth is the addition of 
new material around the boundary of an existing core, cell by 
cell, layer by layer. This kind of process produces the growth 
rings of a tree trunk over many years. But, perhaps surpris-
ingly, there are processes that are similarly accretive, and yet 
they generate intricate branching structures rather than uni-
form rings. Diffusion-
limited accretive growth is 
one of these.

We can understand 
diffusion-limited accretive 
growth by considering a 
single bacterial cell in an 
agar-coated petri-dish. In 
the vicinity of the cell, the 
food supply will be de-
pleted, setting up a gradi-
ent in the level of nutrition 
with its low point at the in-
terface between the cell and the agar. Distant from the cell, 
where the nutrient has been untouched, the nutrient concen-
tration remains at its maximum. If the cell was to divide now, 
creating a daughter cell fastened to the parent’s boundary, the 
nutrient gradient would be altered as the child and parent con-
tinued to eat. The lowest point of the gradient would now be 
near the junction between the two cells, since each cell is con-
suming nutrient from that location. As each of these cells now 
divides when it has acquired sufficient resources to do so, the 
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TOPICS

1. Diffusion-limited accretive growth

2. Diffusion-limited aggregation 

Diffusion Limited Aggregation from a linear seed at the 
base; simulation result from an applet by Joakim Linde.

Trees have a layer of tissue 
between the bark and the wood 
called the cambium. This produces 
the woody cells that make up the 
timber on the inside of the tree, 
and the bark on the outside. The 
production of cells by the cambium 
is rapid in spring when large cells 
are formed, slows down in summer 
and autumn when small cells are 
formed, and stops during winter. 
This variation produces the annual 
growth rings we recognise in the 
cross-section of a felled tree.



nutritional gradient continues to change. The only location for 
new daughter cells is at the existing structure’s boundaries, 
this is the only place where the existing cells can acquire suffi-
cient space and nutrients to reproduce. Near the oldest cells 
on the plate the space and nutrient supply have been depleted.

The pattern that results from this process is not a series of 
rings, it is a branching structure. This appears because cells 
on the outskirts do better by staying away from neighbours 
than they do by overcrowding and trying to eek out a living 

where the nutrient supply 
has been exhausted.

A discrete interpretation of 
diffusion-limited accretive 
growth called diffusion-
limited aggregation (DLA) 
is easy to simulate algo-
rithmically.

[Try the interactive wid-
get online]

The process of aggregation can begin with a single fixed seed 
in the center of an empty space, or with a row of fixed seeds 
organised along a boundary. Free-
floating particles are then intro-
duced to the empty space. These 
execute a “random walk”, hopping 
and jumping about until, at some 
stage, they bump into the side of 
one of the fixed seeds. When they 
do this, the free particles are per-
manently fixed to the seeds at the 
location of their contact. They 
now form part of the fixed struc-
ture to which new free-floating 
particles adhere. As more ran-
domly moving particles stick to 
the fixed structure, it grows 

A slice from a 1300 year-old giant Sequoia, from the Sierra Nevada 
in California, USA on display in the Museum of Natural History, 
London. The centre-most of the tree’s growth rings were laid down 
in the year 557 CE. The tree was felled late in the 19th century.
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Diffusion Limited Aggregation 
from a central seed; simulation 
result from an applet by Joakim 
Linde.

A DLA-like pattern is 
found in dendrites. These 
pseudo-fossils are (inor-
ganic) oxides that crystal-
lise in branching struc-
tures.

http://www.csse.monash.edu.au/~aland/BiologicalBits/DLA.wdgt/
http://www.csse.monash.edu.au/~aland/BiologicalBits/DLA.wdgt/
http://www.csse.monash.edu.au/~aland/BiologicalBits/DLA.wdgt/
http://www.csse.monash.edu.au/~aland/BiologicalBits/DLA.wdgt/


branches. Clearly it becomes 
more difficult for the struc-
ture to grow near its center 
since the most likely place for 
randomly moving particles to 
first contact the fixed cells is 
at the structure’s margins. A 
structure begun from a cen-
tral fixed seed is provided in 

the illustration at left, one commencing from a line appears at 
the start of this section.

The DLA algorithm simulates the deposition of ions on an elec-
trode. It is not an accurate model of the development of organ-
isms such as bacteria on an agar plate, as the biological organ-
ism is responsible for actively consuming the nutrient supply 
in its environment. The result is still an interesting growing 
fractal all the same.

Further reading

Prusinkiewicz, P. (1993). "Visual Models of Morphogenesis." 
Artificial Life 1(1-2), pp. 61-74.

Witten, T. A. and L. M. Sander (1981). "Diffusion-Limited Ag-
gregation, a Kinetic Critical Phenomenon." Physical Review 
Letters 47(19), pp. 1400-1403.

A snapshot of a DLA simulation.
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1. What are L-systems?

2. Turtle graphics

3. Simple extensions to L-systems

SECTION 2

Lindenmayer systems
Plants are photo-synthesising autotrophs; that is, they use en-
ergy from the sun to generate their own energy for develop-
ment and reproduction. The energy is captured by the green 
chlorophyll within a plant’s leaves, but only when the leaves 
are exposed to sunlight. Hence a plant requires some kind of 
semi-rigid structure to allow it to position its leaves in the sun-
light: a trunk and branches, a vine or stem.

What are L-systems?  
[Try the interactive widget online]

A Lindenmayer system (L-system) is a method suitable for 
generating plausible plant branching structures using simple 
rules. The technique is named after Aristid Lindenmayer 
(1925–1989), the Hungarian biologist who came up with the 
idea in 1968.

To build a model plant from an L-system we generate a string 
that represents the branching structure, and then interpret 
this string graphically as a collection of sticks, stems, leaves, 
flowers or fruit. The string is generated from an initial seed by 
a set of production rules that describe how to replace its char-
acters with new ones in discrete steps. The system is therefore 
based on a grammar for generating strings that represent 
plant structures. Depending on which set of rules is used, and 
on the seed from which an L-system is started, it is possible to 
generate many different branching structures of great com-
plexity.
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L-Systems are capable of generating many subtle tree-like struc-
tures. The 1990 text by Lindenmayer and Prusinkiewicz, The Algo-
rithmic Beauty of Plants, is a classic not only in Artificial Life but 
in Computer Graphics modelling. It is available free online.

http://www.csse.monash.edu.au/~aland/BiologicalBits/LSystems.wdgt/
http://www.csse.monash.edu.au/~aland/BiologicalBits/LSystems.wdgt/


Here, as an example, are some L-system components.

Alphabet: a set of symbols representing the modules of a 
plant.

Axiom: the initial string representing the “seed” of the L-
system. The axiom consists of one or more symbols from the 
alphabet.

Production rules: a set of rules that replace a symbol in the 
string (called the predecessor module) with zero, one or sev-
eral other symbols (called successor modules).

A → AAB
B → BC
C → C

The L-system generates a string in discrete steps. At each step, 
the appropriate production rule is called upon to replace each 
character in the string, beginning with the axiom at the first 
step and proceeding until a sufficiently long string has been 
generated to produce a plant model of the desired complexity. 
Different alphabets, production rules and axiom can be used 
to generate different plant models. For the alphabet, axiom 
and rules just given, here is a sample expansion over 3 steps. 
The second stage of the replacement is colour coded to high-

light the conversion of each character in the string by a single 
production rule. One possible graphical interpretation of the 
sequence is given below.

There are many possible graphical interpretations for these 

strings. Nothing about the strings themselves indicates where 
the modules their characters represent must be drawn on a 
page or with respect to one another. Nevertheless, some con-
ventions for interpreting strings as useful plant structures are 
often observed. One of these is based on a “turtle”.

Turtle graphics

Imagine a (virtual) turtle roaming a page or screen. The turtle 
may be instructed to raise or lower its pen, to move ahead a 
distance, to turn by some amount, to save its position, orienta-
tion and pen conditions by pushing them onto a stack, and to 
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A AAB AAB AAB BC
predecessors successors

A  = B  = C  =
Replacement step String

0 A

1 A A B

2 AAB AAB BC

A



pop this information 
back off the stack 
when requested, re-
turning the turtle to 
a previously stored 
state. Collections of 
turtle instructions 
can be stored as sub-
routines. These al-
low the turtle to store detail for drawing complex structures 
that will be repeated. For instance, a leaf or flower might need 
to be drawn multiple times so it makes sense to have a subrou-
tine for each.

It is convenient to use turtle graphics to interpret L-system 
characters graphically. Each character in the string is treated 
as a turtle instruction. For instance, A might tell the turtle to 
draw a stick aligned with its current direction. B could cause 

the turtle to execute a subroutine to draw a leaf, and C might 
instruct the turtle to draw a flower at its current location.

To allow the L-system with its turtle interpretation to produce 
branching structures we can introduce brackets [ and ] to the 
alphabet. These cause the turtle to push and pop its current 
state onto the stack respectively. By following [ with an in-

struction to turn the turtle left (+), or right (-), 
we can make branches in either direction, and 
then return to continue drawing from where 
we left off with a ]. Here is a simple example.

Axiom: A 
Production rule: A → A [+A] A [-A] A

At left is the result of having the turtle draw 
the string that results from applying this rule 5 
times. The turtle was rotated 25 degrees for 

each turn instruction.

Simple extensions to L-systems

Sometimes we might wish for a plant structure to grow 
smoothly over time instead of in discrete jumps correspond-
ing to the sudden appearance of a new character in the string. 
One approach to achieve this is to add a parameter to a sym-
bol in the alphabet. This can be represented as a subscript 
that is explicitly incremented within a production rule.
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Instructions for a turtle that generate a square with leaves at 
each corner by calling the pre-existing subroutine DrawLeaf ( ).

Set colour to black
Pen down
Do 4 times
{
    Forward 10 units
    Push state
    Set colour to green
    DrawLeaf ( )
    Pop state
    Right turn 90 degrees
}

The Turtle can be traced back to the work 
of Seymour Papert, a maths professor in-
terested in educational tools for children. 
In the late 1970s, he proposed that chil-
dren would enjoy and benefit from learn-
ing to program a computer in the LOGO 
programming language, by having their 
programs executed by a Turtle like that de-
scribed here.



Xi → Xi+1   where   X ∈ { A, B, C }  and  i≥0

The character with the subscript might then be drawn as a 
gradually lengthening leaf or as stages in the opening of a bud. 
The parameter’s value specifies the developmental stage of the 
represented module. Unsurprisingly, these are called Paramet-
ric L-systems.

In each example above, exactly one production rule is pro-
vided for every alphabet symbol – these are deterministic L-
systems. Non-deterministic L-systems are also useful. In 
these, there may be several production rules available to act 
on a particular symbol. In cases where there is ambiguity, the 
choice of rule can be determined in a number of ways:

A delay mechanism: ambiguity is avoided in the selection 
of production rules by adding a mechanism to the grammar 
which, after some number of iterations or applications of a 
rule, replaces a production rule by another. This might allow a 
plant to switch from a state where it is producing leaves, to a 
flowering state.

A stochastic mechanism: ambiguity is avoided by specify-
ing a probability with which each ambiguous rule is chosen to 

operate. This allows variation between and within plant mod-
els – useful if you want to generate a forest of different trees!

Environmental change: an entire set of production rules 
may be altered to another set after some external factor trig-
gers the change. For example, a tree might make the switch 
from leaf production to flower bud production when an envi-
ronmental model enters Spring.

Further reading

Prusinkiewicz, P. and A. Lindenmayer (1990). "The Algo-
rithmic Beauty of Plants". New York, Springer-Verlag (free on-
line).
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F0 F1 F2 F3

An L-System generated tree structure.

http://algorithmicbotany.org/papers/#abop
http://algorithmicbotany.org/papers/#abop
http://algorithmicbotany.org/papers/#abop
http://algorithmicbotany.org/papers/#abop


TOPICS

1. Environmentally-influenced growth models

2. Overview of voxel automata

3. Voxel automata growth rules 

SECTION 3

Voxel automata

The study of real plants highlights the extent to which they are 
subject to their environment. They might be blown into un-
usual shapes by the prevailing winds. They can grow over 
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An image generated using voxel automata grown over a model of 
a gazebo. © Ned Greene, 1989. Used with permission.

A strangler fig that has strangled 
a now deceased tree, 
Queensland, Australia.

Snow Gum, Snowy Moun-
tains, Australia. © Richard 
Thomas 1995. Used with 
permission.

A tree and vines grow from the 
roof and walls of a church. Mel-
bourne, Australia.

The propped up branches of the 
the Tree of Hippocrates. Kos, 
Greece.



rocks and support themselves on walls. Vines can swallow ar-
chitecture, and trees in their entirety. These aspects of a 
plant’s form can be among the most dramatic of a landscape’s 
traits. Unfortunately, many methods for modelling plants do 
not easily allow any real interaction between a developing 
plant model and its environment. This can be a serious draw-
back.

Overview of voxel automata

Ned Greene’s Voxel automata technique (originally called 
voxel-space automata) closely marries plant development 
and an environmental model, allowing for some unique plant 
structures to be grown procedurally. In particular, it has been 
used to generate complex vines that carpet architecture and 
respond appropriately to virtual sunlight.

Voxel automata naturally account for:

• Phototropic effects 
that determine the 
rate and direction of 
growth.

• Growth around ob-
stacles such as 
rocks, walls, paths 
and other plants.

• Self-intersection 
avoidance of plant 
structures.

Voxel automata simulations are initiated by dicing the virtual 
space into small cubes called voxels. Voxels that contain ob-
stacles to a plant’s growth such as rocks, architecture or pre-
existing trees are identified. These are marked as “filled” in a 
process called tiling. Filled voxels will not be available for a 
plant model to grow into.

Plant seeds are next placed around the environment in as 
many empty voxels as desired. These are the initial active 
nodes of plant development. Now, at discrete simulation time 
steps, a potential direction and distance of growth is deter-
mined by applying growth rules at each active node. A short 
plant segment is then laid into the voxel space in a suitable di-
rection and, possibly twisted with respect to its parent.

Lastly, voxels newly occupied by plant segments are marked 
as “filled” to indicate that future plant segments may not grow 
into them. This simulation proceeds a step at a time, laying 

down plant segment after 
segment in accordance with 
the rules until a sufficient 
amount of vegetation has 
been generated.

Growth rules

How does each active node 
of a plant model determine 
the direction in which to 
grow next or whether or not 
to branch or grow a leaf? 
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Vines generated using voxel automata. 
© Tobias Gleissenberger, 2006. Used 
with permission.

Winter, generated using voxel auto-
mata grown over a model of a ga-
zebo. © Ned Greene, 1989. Used 
with permission.



Each plant has a set of parameters (see sample Table below) 
that determine the characteristics of its skeleton, leaves, and 
the lighting or environmental conditions it prefers. The simu-
lation randomly generates many, possibly over a hundred, po-

tential segments from each active node. It then selects from 
these the suggested segment that best fits the preferred condi-
tions parameterised for the model plant. A proposal for a 
plant segment is accepted if it satisfies tests for collisions 
against existing objects in the voxel array, proximity to other 
elements of the structure or environment, and the amount of 
sunlight falling into the cells it occupies.

Values for light exposure of a plant segment are computed in 
voxel space by estimating the amount of direct sunlight enter-
ing a voxel into which growth is suggested; and by estimating 
the amount of sky-dome exposure a voxel receives. Shadows 

caused by tiled voxels between the arc swept out by the Sun 
and the voxels to be occupied by the proposed plant segment 
are taken into account. Shadows caused by tiled voxels be-
tween the proposed growth voxels and the sky dome are also. 
In this way an estimate of direct and ambient light at a loca-
tion can be approximated.

Heliotropism may be simulated by incorporating a Sun-
seeking bias into the rule set. A plant may also be made to 
grow over or around an existing geometric model tiled in 
voxel space. Regions of the model may alter the growth charac-
teristics of the plant. For example, paving stones may forbid 
growth over their surface, gables may encourage growth along 
their length or arches may encourage vines to crawl around 
them.

Further reading

Greene, N. (1989). "Voxel Space Automata: Modeling with Sto-
chastic Growth Processes in Voxel Space", in Proceedings of 
SIGGRAPH ’89, pp. 175-184.

Outline of a plant skeleton’s parametersOutline of a plant skeleton’s parameters

segment length The length of each plant segment.

branch age range The average number of growth steps between new 
branches.

branch angle The angle of each new branch.

vertical bias The tendency of the plant to grow upwards.

maximum no. of 
trials

The maximum number of trials to place a plant segment 
before giving up.

minimum no. of 
trials

The minimum number of trials to place a segment before 
selecting one with the best proximity to a target.

seek proximity The preferred proximity (in voxels) to a tiled voxel.

max. proximity The limit beyond which a new segment is considered too 
distant from a tiled voxel to be viable.
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TOPICS

1. What are particle systems?

2. Particle system components

3. Particle system simulation

4. Rendering

SECTION 4

Particle systems
What are particle systems?

When we examine a natural scene, say a landscape, from a dis-
tance, much of what we perceive consists of large shapes and 
solid structures. These can often be represented geometrically 
as solid objects with well-defined surfaces. But in fact every-

thing we see is made of tiny 
particles. Sometimes this is true only at the level of molecules, 

atoms or sub-
atomic particles. 
In cases like this, 
the molecular 
bonds construct 
a well-defined 
solid surface. But 
many natural 
phenomena are 
particulate at a 
much higher 

level, one that does not involve stiff bonds between particles. 
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Cabbage trees, 
Tasmania, Australia.

Button Grass tussocks, Tasma-
nia, Australia.

Wind-blown grass.

Grass in a landscaped garden, 
Shanghai, China.

Weeping Willow tree, Melbourne, Australia



That is, although we might observe a single phenomenon or 
entity such as a cloud, it is actually made up of countless 
macro-sized particles moving independently, often under the 
influence of an external force such as gravity or the wind. Obvi-
ous examples of these particle systems include fog, smoke, 
clouds and sand dunes. A shower of sparks from an exploding 
log, a metal grinder or a firework is also particulate. In these 
cases it makes sense to base our computer models of the phe-
nomena on particles. This idea was introduced to computer 
graphics in 1983 by William Reeves. He used the technique to 
model a wall of fire travelling across the surface of a planet, 
fireworks, and grass. Here we will focus on modelling blades 
of grass but the technique is equally applicable to stems, wil-
low fronds or other long, flexible plant structures. The method 
requires computing the trajectory of many particles ejected 
into space from a generation shape. After emission, each parti-
cle falls under the influence of gravity. The particles’ trajecto-
ries sweep out paths along which plant structures can be gen-
erated. In a later section of the book dedicated to physical 
simulation we will look in more detail at the steps involved in 
this process. Here we treat the particles’ movement in the sim-
plest way we can to achieve the desired effect.

Particle system components

We only need to consider simple particles for this application. 
Our particles will need:

• size, shape and colour
• position and velocity vectors

• birth time and life span

We also need a particle generation shape. This is geometry 
from which particles will be ejected. To make a field of grass, a 
rectangle lying flat on the ground would be an appropriate 
shape from which to launch particles. To produce leaves or 
fronds drooping in a clump from a branch tip, perhaps a sin-
gle point would be an effective particle source.

A generation shape will need:

• A location in space and possibly an extent specified as a 
line, polygon or volume.

• A rate at which to generate new particles.
• A start time at which to begin creating particles.
• An end time at which to stop creating particles.

Rectangular (polygonal) and spherical (point) particle generation 
shapes. Black arrows indicate initial emission velocities of particles. 
Green arrows indicate paths swept out by particles over time under 
the influence of gravity. These green paths can be used as the spines 
of blades of grass, leaves or fronds.
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Particle system simulation
A simulation to generate paths from particles proceeds in dis-
crete time steps. At each one of these steps three things hap-
pen:
(A) Active particles that have reached the end of their life span 

are “frozen” (they won’t be updated further);
(B) New active particles are introduced from active generation 

shapes;
(C) Active particles are moved through space according to a 

physics simulation. 

This process is repeated many times until there are no active 
particles and no generation shapes waiting to generate new 
ones. The example detailed below discusses steps A, B and C 
in the context of generating blades of grass, but the same prin-
ciples apply to other models.

A. Old particles are frozen.
The collection of existing particles in the simulation must be 
tested to see whether it has reached the end of its life. This al-
lows us to decide which particles need to be frozen in space. 
In the case of generating a field of grass, the end of a particle’s 
life tells us to stop generating its path. The path that the parti-
cle has swept out so far is maintained.

B. New particles are introduced.
1. Each particle begins life at, on or in a generation shape. In 

the case of a rectangular generation shape a position is ran-

domly generated for each new particle somewhere within 
the region. The number of particles generated from an ac-
tive generation shape is determined by a rate parameter, 
taking into account the time elapsed since the previous 
simulation time step.

2. Each particle will have its birth time set to a random time 
between the previous time at which particles were gener-
ated by the generation shape, and the current simulation 
time. This ensures that particles are not generated in bursts 
but have evenly distributed birth times.

3. The lifespan of each new particle is set to an appropriate 
value to ensure an adequate blade length will be swept out. 
The values might be varied between particles to generate 
blades of different length.

4. Each new particle is given an initial velocity. This vector 
will have a magnitude (i.e. the particle’s speed) distributed 
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If particle birth times aren’t properly distributed over a time step, 
particles will appear in the simulation only on time step boundaries 
giving the appearance of the generator releasing bursts of particles 
instead of a steady stream.

previous time step at which 
particles were generated

current
time step

× × ×× × × ×× ×

The birth times of particles generated at the current time step are distributed 
across the time elapsed since the last batch of particles was generated

×

birth times of particles generated  
during the previous time step

×× ×



randomly about a predetermined mean. The amount of 
variation alters the variability of the grass blades’ heights 
before they bend downwards under gravity. The velocity 
vector might also have its direction distributed randomly 
about a predetermined mean. If we want the grass blades to 
generally grow upwards, then the surface normal of the rec-
tangular generation shape would suffice as a mean. How-
ever if we want the grass to lean in one direction as if it had 
been blown by the wind, we can use any suitable vector as 
the mean direction.

5. A particle’s colour is initialised to the colour of a grass 
blade’s base.

6. Each particle’s shape is set to the cross-section of a grass 
blade’s base. Most simply, a line, a V, or an O shape might 
suffice. If necessary, the size of this should be set to the de-
sired size of the blade’s base.

C. Active particles are updated.
1. Each active particle must have its velocity updated by ap-

plying acceleration due to gravity. The change of velocity 

can be calculated using Euler’s formula: 
 
v′�= v + aΔt

which simply states that we need to multiply the accelera-
tion due to gravity – a, a constant vector of magnitude 9.8 
ms-2 oriented downwards – by the simulation time step 
length (∆t, a scalar value) and add the resulting vector to 
the velocity vector v of the particle to give us the particle’s 
new velocity v′.

2. Each particle must have its position updated by its veloc-
ity. The change of position can also be calculated using 
Euler’s formula: 
 
p′�= p + vΔt 
 
which in this case simply 
states that we need to mul-
tiply the velocity v of the 
particle by the time step 
length (∆t, a scalar value) 
and add the resulting vec-
tor to the current position 
vector p of the particle to give us its new position p′.

3. We must update the colour of each particle to give us the 
desired change since the previous time step. For instance, 
some grasses are white at their base, green in the middle 
and brown towards their tips. To simulate this, as each par-
ticle ages, we must compute its new colour by interpolat-
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Particles having their velocity 
and position updated using 
Euler’s formula include those 
just introduced in the current 
simulation time step (§B.2). 
These particles will have ∆t less 
than a full simulation time step 
that is calculated by subtracting 
their birth time from the current 
simulation time.

Each particle’s initial velocity can be set individually. By varying initial 
speeds and directions the grass may be made more or less uniform.

surface 
normal 45∘ to the 

right

generally upright generally rightwards 



ing between white and green for the first half of the parti-
cle’s life, and between green and brown for the second half 
of its life.

4. We must update the size of the blade by adjusting the size 
of the particle. For example, some blades are broadest at 
their base and taper to-
wards the tip. To simulate 
this we simply reduce the 
diameter of the particle as 
it ages so that when it 
reaches the end of its life 
the size will be zero.

5. Since the particle’s move-
ment is sweeping out a 
path along which we will 
lay a blade of grass, we 
need to append the cur-
rent position, colour and 
size of a particle to the list of all previously computed val-
ues for that particle. Don’t throw anything away or over-
write previously calculated values!

Rendering
We can render the paths of all particles while the simulation is 
running. This will give a simple animated representation of 
growing grass. Alternatively, the rendering can be postponed 
until all of the particles and generation shapes have become 
inactive. At this point we can stop the simulation.

To render a particle’s path we interpolate between each stage 
of its saved trajectory. This can be done most easily with a line 
of thickness specified by the particle’s size and colour speci-
fied by the particle’s colour at each stage of its history. If more 
complex forms are required, polygons or surfaces of appropri-
ate cross-section generated from splines can generated be-
tween subsequent steps of each particle’s trajectory.

Further reading

Reeves, W.T. (1983). “Particle Systems – A Technique for 
Modeling a Class of Fuzzy Objects”, ACM Transactions on 
Graphics, Vol. 2, No. 2, pp. 91-108.
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The diameter of the particle can 
be reduced over its life time. In 
this way, the path it sweeps out 
will taper towards the growing tip.



CHAPTER 5

Locomotion

Creatures as tiny as a single cell or as 
large as rhino can move about. They 

twitch, crawl, row, flip, slither, gallop, 
charge, walk, soar, hover or hop to name 

just a few mobility approaches. To 
understand how these movements are 

possible, some basic physics is necessary. 
Although these principles are not specific 

to Artificial Life, an introduction is 
included here to allow  readers to 

understand the basics.   



TOPICS

1. What is physical simulation?

2. Differential equations

3. Euler’s integration method

4. Newton’s second law of motion

5. The dynamics simulation loop

6. Micro-organism locomotion

SECTION 1

Physical simulation
What is physical simulation?

Since at least the 7th C. BCE, articulated dolls capable of bend-
ing a limb have been made. But getting them to move autono-
mously, and to coordinate each joint to mimic the fluidity of 
animal motion has always been challenging. This same hurdle 
must be met by today’s robotics researchers as they try to 
build articulated machines that walk, catch a ball or lift a frag-
ile object without crushing it. Each mobile biological organism 
has evolved the physiology that allows it to coordinate its mo-
tion. We will explore the process of evolution of behaviour in a 
later chapter. In this one we explain how to simulate the physi-
cal processes that allow locomotion and movement to occur in 
the first place.

Physical simulation is a relevant skill for many software-based 
artificial life researchers because the unique structures of real 
organisms are often adaptive traits for survival and reproduc-
tion in a physical world. If we want similar diversity in a vir-
tual environment, one way to get it is to simulate real physics.

In the virtual world nothing comes for free, especially not the 
basic properties of the physical universe. We must therefore 
explicitly state all constraints: if we don’t want solid objects to 
intersect one another we must explicitly code that; if we want 
items to fall under gravity we must write software to make it 
happen; if we want a force to accelerate an object we must un-
derstand and implement this process; if we want virtual crea-
tures to swim we must model fluid drag.
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Here are four stepping-stones towards physical models of com-
plex vertebrates.

 1. Differential equations  
 2. Particle dynamics  
 3. Rigid-body dynamics 
 4. Articulated-body dynamics

The astute reader will notice that particle systems have al-
ready been discussed in relation to modelling grasses and 
leaves. In that discussion, the solution of differential equa-
tions was introduced surreptitiously also. Particle systems are 
in fact simple physical models. The particle system discussed 
earlier was a kinematic model. Kinematics is concerned di-
rectly with the acceleration, velocity and position of bodies 
(such as particles), without reference to their mass or the 
forces required to move them. In this section we will discuss 
particle dynamics. Dynamics simulations take into account 
the effects of forces applied to bodies and the resultant 
changes in acceleration, velocity and position they undergo. 
As this is not a text on physical simulation we will only go so 
far as to explain particle dynamics and demonstrate how this 
may be used to simulate simple moving organisms. Rigid and 
articulated-body dynamics are beyond the scope of this book.

Differential equations

A differential equation is a mathematical way of expressing 
how some function of a number of variables changes. For in-
stance, a differential equation may specify how a flying parti-
cle’s position specified as a single Cartesian coordinate, x, 

along an axis changes over time. Of particular interest to us 
are initial value problems where we are given x at an initial 
time t0 and need to follow x over time as we step through a se-
ries of time steps from t0, t1, t2 ... tn where the difference be-
tween subsequent times steps, the time step length, is usually 
shown as ∆t. ∆t represents the smallest increment of time we 
consider in a simulation. All events happening within a single 
∆t of time between time step tn and tn+1 are considered in the 
simulation to be simultaneous. We can write the initial value 
problem specifying the position x at time t0 as:

x(t0) = x0

And the change in x over time is written as:

x′�= f(x, t)
That is, the change in x, specified by x′, is a function f of two 

variables, the position x and the 
time t.

Euler’s integration method

A simple, rough, but often useful 
way to solve initial value problems 
specified as ordinary differential 
equations is to apply a technique 
devised by the 18th C. Swiss 
mathematician, Leonhard Euler. 
Euler’s method for approximating 
a smoothly changing variable 
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As the function f is approxi-
mated by increasingly 
short line segments, the 
potential accuracy of the 
approximation increases.

x0

t0 tn
...

f  (x,t)



(such as position of a par-
ticle x) is to approximate 
the function by a series 
of discrete steps, each of 
which is linear. The 
smaller the step size (∆t 
in our terminology), the 
closer the linear approxi-
mation sits to the actual 
value the function 
sweeps out. Of course the 
trade off in using short 

straight segments to approximate a 
curve is that you need many of them, es-
pecially if the curve changes direction 
often. This can require great computa-
tional resources to manage.

Regardless of the length of line seg-
ments used, if the function being ap-
proximated is not actually made of lin-
ear segments, then even short linear ap-
proximations to its value can never fol-
low its curve exactly. (This is especially 
problematic when a path is circular. No 
matter how short the segments you use 
to approximate a circumference, your 
approximation will get worse and worse 

over time unless you correct for your errors.) But the approxi-
mation given by Euler’s method is often sufficiently accurate 
for Artificial Life creature simulations that are only to be evalu-
ated visually. Just don’t use Euler’s method for critical simula-
tions of real world situations though.

For our problem, Euler’s method is specified:

x(t + Δt) = x(t) + f(x, t)Δt

This says that the value of x at some future time (the current 
time t plus ∆t), is equal to the sum of the value of x at the cur-
rent time t, and the derivative of x multiplied by the time step 
length. The derivative of x is the rate of change of x. The rate 
of change of position (the value we are interested in for this ex-
ample) is of course, velocity. So the future position x is given 
by the current position plus the velocity multiplied by the 
amount of time over which it acts. This is just what we did in 
the particle system simulation earlier when we used the for-
mula:

p′�= p + vΔt

We were integrating the velocity to compute the change in po-
sition. Note that during ∆t the velocity is assumed to remain 
constant – we only use one value for velocity in each time 
step. Hence, the position of the particle changes linearly dur-
ing each time step. This linearity is the reason why Euler’s ap-
proximation is called a first order approximation of the func-
tion. As we indicated earlier, Euler’s method represents the 
change of x as a series of linear increments.
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The Runge-Kutta integration 
technique is almost as simple to 
implement as Euler’s approach but it 
is more accurate – a fourth order 
approximation. It is also relatively 
fast to execute. For situations where 
Euler integration is proving 
troublesome, Runge-Kutta 
integration is often suitable. It is 
important to realise though that 
even the Runge-Kutta technique is 
an approximation. Consult a 
textbook on numerical methods for 
details.

In some cases, such 
as when the function 
to be approximated 
is a circular vortex 
in which the direc-
t i o n a p a r t i c l e 
should move is per-
fectly circular, it 
doesn’t matter how 
short the line seg-
ments become. The 
particle will always 
s p i r a l o u t w a r d s 
from the centre.



As we know from our particle system discussion earlier, the 
rate of change of velocity, that is the derivative for the veloc-
ity, is the body’s acceleration. We can use Euler’s technique to 
compute the new velocity of a body at a future time based on 
its current velocity and the length of time over which the accel-
eration acts. As before, by using Euler’s method we are assum-
ing that acceleration is constant during a time step ∆t. We 
write the change in velocity as:

v(t + Δt) = v(t) + f ′ �(x, t)Δt

The f ′ in f '(x,t) represents the derivative of the velocity, the 
acceleration. So far this is exactly as it was for the particle sys-
tem simulation. When modelling a falling particle the force 
acting on it due to gravity is constant over time. But what if 
forces acting on the particle change?

Newton’s second law of motion

In 1687, the physicist Isaac Newton published his second law 
of motion. This stated that the acceleration of a body is di-
rectly proportional to, and in the same direction as, the net 
force acting on the body, and inversely proportional to its 
mass. This is encapsulated in the well known formula:

F = ma

where F is the net force acting on the object, m is the object’s 
mass and a its acceleration.

What kinds of forces might act on a body? Some examples in-
clude forces generated by thrust from a jet, a push or a pull 

from a spring or muscle. Repulsion and attraction acting be-
tween magnets and charged particles are also forces. One mov-
ing body might give another a shove, and gravity acts on bod-
ies to bring them together. 
Friction between surfaces, in-
cluding fluid drag between a 
solid and a liquid, might also 
be forces considered in dynam-
ics simulation.

The dynamics simulation 
loop and rendering

We now have all the pieces 
needed to implement a simple 
particle dynamics simulation. 
For each mobile particle, for 
each time step in our simula-
tion, we must follow the sequence of calculations just out-
lined. These are summarised (using Euler’s integration tech-
nique) in the figure. Each step allows us to plug the computed 
value on its lefthand side into the righthand side of the next 
step to continue the calculation.

Recall that when we used particle kinematics to sweep out the 
span of a blade of grass we drew every stage of a particle’s 
path connected to its previous position? If we are only inter-
ested in the current position of each particle we needn’t do 
this. Instead, after a number of simulation time steps we may 
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F = sum of all forces
acting on an object

Compute acceleration

a = F / m

Compute future velocity

v (t + ∆t) = v(t) + a ∆t

Compute future position

x (t + ∆t) = x(t) + v ∆t

Update object position.

For each ∆t 
For each object 



just clear the display area completely and re-render each parti-
cle in its latest position.

Micro-organism locomotion

The dynamics governing the movement of 
micro-organisms is quite different to that of 
familiar marine, terrestrial or avian crea-
tures. Although it is beyond the scope of this 
book to detail the mathematics, a general ex-
planation of the differences between the 
kinds of locomotory systems usually encoun-
tered, and those that occur at the micro-scale 
is included next. Assumptions based on our 
own personal experience do not necessarily 
hold for other organisms.

Protozoa have extremely low masses and 
must propel themselves through fluids under 
the influence of high viscous drag. Under 
such conditions, a microscopic organism can-
not successfully propel itself like a cephalo-
pod (octopus or squid), nor can it generate 
lift with aerofoils in the manner of larger ma-
rine or avian animals. Conventional rowing 
motion is also ruled out at this level. In order 
to understand how a micro-organism gener-
ates thrust, we must examine the behaviour 
of a fluid/body system at the cellular scale.

The Reynolds number, Re, is a dimensionless 

value representing 
the ratio of inertial 
to viscous stresses in 
a fluid/body system. 
Systems consisting 
of a Protozoan and a 
fluid with the den-
sity and viscosity of 
water have ex-
tremely small Rey-
nolds numbers. The 
interactions between 
the fluid and solid 
body are governed 
almost exclusively 
by viscous forces. Consequently a single-celled organism in wa-
ter will come to a halt as soon as it ceases to apply thrust – 
imagine yourself swimming through honey. Also at low Rey-
nolds numbers, a slow stroke through the fluid induces the 
same amount of drag as a rapid stroke. If a microorganism 
tried to “swim” by executing a recovery stroke that is symmet-
rical to its power stroke, even if the recovery stroke occurred 
at a lower angular velocity, the organism would exactly undo 
the work done by the power stroke. Something specifically tai-
lored to the task of cellular locomotion is required. Thrust is 
generated by the continuous motion of waves through cellular 
projections attached to the main structure, flagella (on organ-
isms called flagellates) and cilia (on ciliates).

90

Paramecium 
is a freshwa-
t e r c i l i a t e 
w h o s e s u r-
face is cov-
ered in tiny 
cilia.

From Thom-
son J.A., Out-
lines of Zool-
o g y , N e w 
York, NY: D. 
Appleton & 
C o m p a n y , 
1916.

"Various forms of Dinoflagellata. 2. shows 
the shell only; 4a is an undischarged, and b 
a discharged stinging-capsule; chr, chroma-
tophores; fl. 1, longitudinal flagellum; fl. 2, 
transverse flagellum; l. gr, longitudinal 
groove; ntc, nematocyst; nu, meganucleus; 
nu, micronucleus; pg, pigment spot; t. gr, 
transverse groove." From Parker, TJ., A 
Manual of Zoology, New York, NY, The 
MacMillan Company, 1900.



Flagella are long tendrils that usually operate by actively 
propagating a helical or planar wave along their length from 
base to tip. Some forms of flagella operate purely by rotation 
at the base. In this case the tendril is left to drag freely 
through the fluid. The thrust generated by a flagellum is en-
tirely due to viscous shearing and is generated parallel to the 
direction of wave propagation.

Ciliates are typically larger than flagellates although cilia are 
the shorter tendril type. Rather than propagating regular 
waves along their length, cilia act like miniature oars. Several 
thousand cilia may exist on the one organism, often arranged 
in closely packed rows across complete surfaces. Since at low 
Reynolds numbers a conventional rowing motion is unsuit-
able for propulsion, the cilia vary their rigidity during beating. 
The power stroke is made by pivoting from the base of the cil-
ium. The structure itself remains relatively straight and rigid 
during this phase. On the recovery stroke, the cilium is al-
lowed to relax along its length. Cilia are drawn tangentially 
through the fluid by a bend which rises from their base and 
passes along until it reaches the tendril tip. During this phase 
the drag on the tendril is caused almost entirely by the tangen-
tial flow of fluid across its surface. Consequently the recovery 
phase induces less resistance than the power stroke and the 
organism is able to use the cilia for locomotion by dragging 
fluid over its surface.

A frequently encountered natural solution to the problem of 
coordinating multiple limbs is the metachronal wave. This en-
sures adjacent propulsive structures operate slightly out of 

phase with one another to minimize interference and allow 
the continuous generation of thrust. Cilia are ideal candidates 
for control by metachronism. The direction and rate of beat-
ing may be fixed or under organism control.

Flagella and cilia are both amenable to modelling as rigid cy-
lindrical elements connected to one another by springs in a 
mass-spring system, the subject of the next section.

Further reading

Dorin, A., Martin, J (1994), "A Model of Protozoan Movement 
for Artificial Life", in Proceedings Computer Graphics Inter-
national ‘94, Melbourne, World Scientific, Kunii & Gigante 
(eds), pp. 28-38.
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TOPICS

1. Spring forces

2. Mass-spring systems

3. The spring-loaded worm

4. Sticky Feet

SECTION 2

Spring-loaded locomotion
Spring forces

Robert Hooke was an English polymath who made the first ob-
servations of biological cells in plant matter (cork actually), 
which he illustrated in a significant work in the history of Sci-
ence, Micrographia (1655). Hooke also invented the balance 
spring, a breakthrough in the regulation of watches and 
clocks, and he is known for his law relating the force on a 
spring to its displacement from rest length:

F = k (L - l)

The value k is known as the spring constant, a measure of the 
stiffness of the spring. L is the spring’s natural length at rest, 
and l is its current length, for instance when compressed or ex-
tended. Hooke’s Law is in fact 
only a first-order approximation 
of the force required to deform a 
spring by a certain length. But as 
long as the spring is not de-
formed very much and L-l is 
small, the law holds well, even for 
many deformable objects other 
than springs.

Since the advent of spring-driven 
clocks, coiled springs of different 
sorts have continued to provide 
the motive force for automata. 
For software-based modelling, 
springs make suitable substitutes 
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An articulated toy snake could conceivable have its rigid body-
segments connected by springs along its sides, each segment 
being chained to its neighbours. As the rest-lengths of the 
springs are artificially reduced or lengthened, the springs 
would provide a force to flex the snake from side to side. If coor-
dinated appropriately, they may cause the snake to slither. 
Cilia and flagella can be simulated similarly.

I m a g e f r o m R o b e r t 
Hooke’s Lectures De Po-
tentia Restitutiva or of 
Spring Explaining the 
Power of Springing Bodies 
(1678).

This Bonga automaton has a 
spring-powered gait of a more con-
ventional kind. It is one of many 
similar machines from Kikkerland 
that bucks the trend of making 
battery-powered toys.



for muscles. We can even build complete virtual organisms by 
modelling the rigid components of their bodies as point-
masses or solid polyhedra, and connecting these to one an-

other with springs that may introduce 
limb and torso motion of different kinds.

A simple mass-spring system

In the figure, an idealised massless spring 
is hanging from a fixed beam. The spring 
is at rest and its current length l is its 
rest-length, L.

When an ideal-
ised point-
mass hangs at 
rest from the 

spring the spring stretches to a new 
l so that the force it applies is ex-
actly counter to the force generated 
by the mass acting under gravity.

If we now extend the spring even 
further by pulling the mass down-
wards, and we let go, the mass-
spring system will enter simple har-
monic oscillation. By extending the 
spring we force it to apply a 
counter force to that we generate. When we release the mass, 
the spring moves through its rest position into contraction. It 
then tends to expand again to the extended position. An ideal 

system that does not lose energy to friction will oscillate like 
this indefinitely but any real spring-mass system is damped. 
It loses energy in the form of heat generated by friction within 
the spring and by the movement of the mass through the air.

A damping force generated by drag of an object through a vis-
cous fluid like air can be represented mathematically too. The 
damping force always acts in a direction opposite to the mo-
tion and is proportional to the speed of the movement and a 
constant accounting for the viscosity of the fluid and the size 
and shape of the object. This constant is the damping factor D 
in the following equation.

F = k (L - l) - D (dl / dt)

The equation states that the force acting on the mass is the 
sum of the spring force generated by its deformation from 
rest, and the damping factor multiplied by the rate of change 
of spring length (i.e. the mass’ velocity). With a simple system 
like this it is possible to imagine a virtual creature.

The spring-loaded worm (William)

William is a simple, virtual, spring-mass construction involv-
ing two point masses, one spring and two claws. The claws 
constrain the motion of each mass to be in one direction only 
– they are infinitely grippy in one direction and slippery in the 
other.

The worm begins at rest. To make it move we artificially 
change the rest length of the spring. If we shorten it the spring 

93

An idealised 
spring suspended 
from a fixed beam 
remains at its 
“rest length”.

lL

A spring supporting a 
hanging mass extends to a 
length beyond its rest 
length such that it count-
ers the weight of the sus-
pended mass.

l

F = m g

F = k (L - l)

L



will apply a force 
squeezing the masses 
together. The right 
claw will hold one 
mass fast. But the left 
claw allows the other 
mass to slide to the 
right, past its resting 
position. Once it 
reaches the furthest 
right it can go, (the dis-
tance will depend on 

the initial value of L-l), it is prevented from returning under 
simple harmonic motion to the left by its claw. The spring is 
now compressed and applies a force pushing the masses 
apart. But only the mass on the right can slide in the direction 
required to allow the spring to return towards its natural 
length. It now slides right beyond the rest length of the spring, 
extending it. The spring now needs to contract but the mass 
on the right is held from moving in the required direction by 
its claw. This cycle repeats indefinitely as the two masses 
crawl, one following the other, towards the right.

We can simulate the movement of this creature using Hooke’s 
law without worrying about the damping factor, but the result-
ing motion is uncontrollable. The addition of the drag force 
usefully causes the creature to come to a halt shortly after we 
stop animating the rest length of the spring.

To implement the physics required, we replicate the particle 
dynamics calculations we have already explored. I.e. from the 
sum of the forces acting on each mass we compute accelera-
tion, velocity and positions in a series of incremental steps. 
The forces acting on the point masses are generated by the 
spring using Hooke’s law. The surface friction acting on a 
mass against a claw is infinite and counters any spring force 
applied, but it is zero if the force acts in the opposite direction. 
The drag on each mass, just another force to take into ac-
count, is computed from the damping factor multiplied by the 
current velocity of each mass.

Sticky Feet

We needn’t restrict ourselves to snakes and worms. Complex 
organism bodies can be animated using mass-spring systems 
as long as they can be decomposed into rigid structural ele-
ments and a set of stabilising and joint-activating springs. Eve-
rything from fish to humans has been attempted using this 
method. One novel application of mass-spring creatures in-
volved the evolution of a whole virtual ecosystem by Greg 
Turk. Dubbed Sticky-Feet (for reasons apparent to anybody 
who has just considered the spring-loaded worm), hosts of 
creatures attempt to eat one another as they bumble around 
their 2D environment, feeling each other out with sensors. 
Successful predators reproduce offspring that inherit their 
traits, along with possible mutations that may (or may not) en-
hance their survival and replication. Evolving virtual ecosys-
tems are considered in detail in a later chapter.

When the rest length is decreased so 
that it is less than the current length of 
the spring, the spring generates a force 
to return its ends to the new rest length, 
forcing the masses together. Only the 
left side is free to move in the required 
direction. The right side is fixed by its 
one-way claw.

L < l l
L

Force

FixedMoves
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http://www.cc.gatech.edu/gvu/people/Faculty/greg.turk/stickyfeet/index.html
http://www.cc.gatech.edu/gvu/people/Faculty/greg.turk/stickyfeet/index.html


Further reading

Miller, G. (1988). The motion dynamics of snakes and worms. 
In SIGGRAPH ’88 , pp. 169-173.

Turk, G. (2010). “Sticky Feet: Evolution in a Multi-Creature 
Physical Simulation”, Artificial Life XII, Odense, Denmark, 
MIT Press, pp. 496-503.

A zoo of evolved creatures from Greg Turk’s Sticky Feet. Each vir-
tual organism is an animated mass-spring system with a mouth (cir-
cled in grey) and a heart (circled in red) that it must protect from 
being eaten. Creatures also have sensors (not shown) that enable 
them to detect the presence of others. The sensors may dampen 
specific springs in their owner’s body. If arranged properly this can 
cause the creature to turn towards (or away from) another. © Greg 
Turk 2010. Used with permission.
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Sticky Feet interacting in an ecosystem. 
© Greg Turk 2010. Used with permission.



CHAPTER 6

Group Behaviour

A daring and agile bird twisting and 
turning is exciting to behold. More 

breathtaking still is a flock in full flight as 
it wheels about the sky; a dark cloud, 

seething and writhing; a super-organism, 
one creature made of many. This chapter 

explores models of collective behaviour 
including flocks, herds, schools and 

swarms.



TOPICS

1. Aggregate movement in nature

2. Forcefield-based flocking simulation

3. Distributed flocking simulation (boids)

4. Additions to the distributed model

SECTION 1

Flocks, herds and schools
Aggregate movement in nature

Birds and sheep flock, fish school and cows move in coordi-
nated herds. One benefit of this is that it reduces the chance 
an individual group member may be singled out by a preda-
tor.  These animals’ group behaviours share a number of char-
acteristics. For simplicity we will refer to them all collectively 
as flocking. Flocking is a behaviour that:

• Is an aggregate, polarized, non-colliding motion of a group 
of animals.

• Propagates rapidly through a large group of animals.

• Can occur independently of the number of group members.

• Is complex and emergent from the interactions of the 
group’s individual members.

The emergence of a flock from the interactions of a group of 
animals has become one of the iconic phenomena of Artificial 
Life, along with the Cellular Automaton behaviour of The 
Game of Life discussed earlier. Prior to the current way of 
thinking about this behaviour which was pioneered by Craig 
Reynolds in 1987, a number of simulation models had been de-
veloped. These were primarily designed for computer graphics 
applications rather than for understanding biological behav-
iour. As soon as there are many agents in a complex, dynamic 
group such as a flock, manual animation becomes tedious and 
impractical. A procedural method for computing the behav-
iour of multiple creatures acting in concert is very valuable! 
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This group of squid is rapidly expanding in response to “fear” 
instilled by a massively repulsive vector.



With the application for which it was developed in mind, it is 
interesting to explore an early model of flocking behaviour.

Forcefield-based flocking model

The force-field model of bird flocking behaviour was designed 
in 1985 by Susan Amkraut. She simulated a flock of birds in 
motion tests and a final animation entitled Eurythmy which 
was produced in collaboration with Michael Girard who fo-
cussed on legged animal motion (1985/89). Amkraut con-
structed repulsive forcefields around each static object and 
mobile bird in her animated scene. The forcefields assisted 
the birds to avoid colliding with one another and the architec-
tural models. To choreograph the flocking behaviour, the 
birds were also subject to global forces that acted from sinks 
(attractive locations), sources (repulsive locations), spirals 
and orbits. These force-generating bird manipulators could be 
positioned and varied by the animator to create a dynamic 
forcefield. Paths for the birds were calculated automatically in 
discrete increments through the dynamic environment by tak-
ing into account the forces acting on each individual bird in its 
current location.

The force-field model is unconcerned with emergence. Al-
though, with some caveats, the overall effect resembles real 
flocking behaviour, the model is implemented in a way that 
doesn’t reflect the underlying capabilities or senses of individ-
ual birds. For our purposes, this must instead be based on 
each bird’s local observations and internal state.

In some real flocks of birds an experienced leader guides the 
group on its migratory path. Models of this type have also 
been implemented, but if we are interested in the emergence 
of the flocking behaviour from the interaction of the flock 
members, we need to find an intrinsically distributed model.

Distributed flocking simulation

In 1987, Craig Reynolds published what has become the most 
well known flocking algorithm. Importantly from our perspec-
tive, he took the explicit step of treating each boid (bird-oid) 
as an individual agent among a population of others. In Rey-
nolds’ algorithm each individual reacts purely to its surround-
ings including static obstacles and other boids in close proxim-
ity. Each boid acts according to a set of simple behavioural 
rules shared by all flock mem-
bers. Reynolds demonstrated 
his algorithm by animating a 
flock of birds and a school of 
fish in an animation titled 
Stanley and Stella in Break-
ing the Ice (1987). The princi-
ples his technique introduced 
have since become a staple of 
the animation industry being 
used not just for fish and 
birds, but even crowds of peo-
ple and hoards of angry orcs, 
goblins and trolls. 
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A screen-grab from Reynold’s 
simulation showing a flock of 
boids (bird-oids) avoiding a colli-
sion with a series of columns by 
splitting into several groups 
while maintaining their general 
direction of travel and their prox-
imity to other flock members. © 
Craig Reynolds, 1987. Used with 
permission.



The boids [Try the interactive widget online]

The boids of Reynolds’ algorithm are best visualised as ori-
ented particles – for effect, each should have a clear front so 
that the directional properties of the flock are clearly visual-
ised. If the flocking model is to be constructed in 3D, clearly 
differentiated boid sides, tops and bottoms also add to the im-
pact. Each boid in the flock is modelled as an autonomous 
agent that can perceive only its close neighbours and environ-
ment within a limited visual range. Within the limitations of 
its visibility, each boid repeatedly applies the same four sim-
ple rules every time it needs to fly a tiny distance forwards:

1. Avoid collisions with visible static objects

2. Avoid collisions with neighbouring boids

3. Match velocities with neighbouring boids

4. Move towards the centre of neighbouring boids

By following these, each boid picks its way through space un-
der its own guidance. Note that none of the rules explicitly 
specifies that a flock be formed. The flock emerges from the 
tendency to avoid collisions, match velocities and move to-
wards a location surrounded by other boids. In addition, once 
it forms, there is no preferred direction of travel for the flock. 
Even the flock’s path emerges from the individual behaviours 
of the boids. In a nutshell, here is how the individual rules 
work.

1. Avoid collisions with visible static objects.

Each boid is aware of its current position with respect to static 
obstacles around it and its own velocity. Every time it needs to 

make a decision 
about the next incre-
ment in its flight 
path, it computes 
any potential colli-
sions it might have 
with static objects. If 
there is an immi-
nent collision, the 
boid computes a lo-
cation on the silhou-
ette edge of the ob-
stacle that doesn’t 

cause it to deviate from its path too dramatically, and com-
putes a force to direct it towards that location.
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Still images from Craig Reynolds’ Stanley and Stella in Breaking 
the Ice © Craig Reynolds, 1989. Used with permission.

Static collision avoidance involves detect-
ing imminent collisions and computing a 
location on the silhouette edge of the obsta-
cle that will cause the least deviation from 
the desired goal or current path.

projected 
collision point

preferred target point

less suitable target point

current velocity

deviation from path

deviation from path

boid

http://www.csse.monash.edu.au/~aland/BiologicalBits/Boids.wdgt/
http://www.csse.monash.edu.au/~aland/BiologicalBits/Boids.wdgt/


2. Avoid collisions with neighbouring boids. 

An easy way to 
avoid collisions 
with others is for 
a boid to keep its 
distance from 
them. This can 
be achieved by 
enforcing a re-
gion of protected 
space around 
each flock mem-
ber. Within this 

space, forces (vectors specifying a direction and magnitude for 
the forces) can be computed to push a boid away from others 
much as was done in Amkraut’s flocking model discussed pre-
viously. The explicit specification of a personal space range al-
lows a boid to safely ignore flock members that are so far away 
as to be irrelevant or imperceptible.

3.Match veloci-
ties with neigh-
bouring boids.

Another way to 
avoid collisions with 
neighbours is to 
align your velocity 
with theirs. This also 

contributes to the direction of travel for the flock. So, for each 
neighbour in the flock visible to a boid, it should try to match 
its heading and speed. This can be achieved by averaging the 
velocity vectors of the visible neighbours.

4. Move towards the centre of neighbouring boids.

If the flock is to 
remain coherent, 
and not simply be 
spread apart by 
the repulsive 
forces specified at 
rule 2, then a ten-
dency to move to-
gether can assist 
the velocity 
matching rule in 

maintaining boid proximity. This rule can be managed by iden-
tifying the local centre of each boid’s neighbouring flock mem-
bers (their centroid or average position), and computing a 
force to direct the boid whose movement is being computed 
towards it.

Once all of the forces have been computed for rules 1 to 4, 
these can be added to one another to compute a sum that ac-
counts for the contribution of each rule. The components can 
be weighted as desired, for instance to make the collision 
avoidance more important than the velocity matching. Then 
the net force is applied to the boid, its acceleration is com-
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To avoid colliding with neighbours, each boid 
computes vectors heading away from those that 
impinge on its personal space. The sum of these 
vectors will provide a direction that best moves 
the boid away from other flock members in its 
vicinity.

A comfortable “personal space” range 
surrounds each boid.

Move away from 
neighbours that are 
too close.

Ignore boids 
outside the range.

boid

close neighbour

One way to avoid colliding with neighbours 
and to give the flock some direction is to 
have each boid steer in the same general di-
rection as those around it.

A visual range surrounds each boid. This doesn’t need 
to be the same as the “personal space” comfort zone.

Align with visible 
neighbours

boid

close neighbour

To keep the flock together, the model provides 
a force directing each boid towards the centre 
of its local neighbourhood.

A visual range surrounds each boid. This doesn’t need 
to be the same as the “personal space” comfort zone.

Move towards the 
centroid of visible 
neighbours

centroid
boid

close neighbour



puted from this, then its new velocity, and finally its new posi-
tion. This series of computations matches that discussed for 
updating particle systems and in the section specifically on 
physical simulation. If all the boids in the model undergo this 
update process, over time a flock emerges!

Additions to the distributed flocking model

As noted earlier, a flock implemented according to a distrib-
uted model has a mind of its own. Suppose an animator 
wanted the flock to enter a room through a window, do one cir-
cuit, and then fly out through the door. How might this be con-
trolled without destroying the emergent dynamics of the 
flock? One simple technique is to add a fifth rule to the boids’ 
list that adds a small force causing each boid to head towards 
an animated location in space. This point is under the direct 
control of the animator. The resulting migratory urge can be 
used to pull the flock along while the flock members continue 
to observe rules 1 to 4 as well.

Suppose a shark was to appear in a tank of schooling fish. 
How might the school behave? By adding a highly 
weighted vector directed away from the 
predator to each boid’s (foid’s?) 
force, the desired rapid motion can be 
realised.

An additional consideration in modelling fish, birds, or even 
a swarm of flies, concerns enforcing limits to their motion. 
For instance few birds can hover. Perhaps non-humming-
boids ought to have a minimum flight speed imposed. Like-

wise, maximum speeds, accelerations and rates of turn are 
worth implementing depending on the capabilities of the mod-
elled organisms.

Further reading

Girard, M., Amkraut, S. (1990). “Eurythmy: Concept and proc-
ess”, The Journal of Visualization and Computer Animation, 
Vol. 1, No. 1, DOI: 10.1002/vis.4340010104, pp. 15–17.

Reynolds, C. (1987). "Flocks, Herds and Schools: A Distrib-
uted Behavioural Model", Comp. Graph. Vol 21, No. 4, (SIG-
GRAPH 87) pp. 25-34.

Tu, X., Terzopoulos, D. (1994). "Artificial Fishes: Physics, Lo-
comotion, Perception, Behaviour", Comp. Graph. Proc. 1994, 
(SIGGRAPH 94) pp. 43-50.

101



TOPICS

1. Swarms in nature

2. Swarms and algorithms

3. How can a swarm build a heap?

4. Sequential and stigmergic behaviour

5. Wasp nest construction 

SECTION 2

Swarm intelligence
Swarms in nature 
The idea of swarm intelligence arose largely from observa-
tions of the complex behaviour exhibited by the eusocial in-
sects:  bees, ants, wasps and termites. Colonies of these crea-
tures exhibit more complex behaviours than “just” a swarm of 
flies or a school of fish. The special traits that warrant their de-
scription as highly social insects are: the reproductive division 
of labor by castes, the presence of at least two overlapping gen-
erations capable of contributing to colony labour, and the co-
operative care of the young by the colony. The care of the 
young is usually carried out by a largely sterile worker caste 
that supports the reproductive individuals in the colony. In or-
der to survive, these social insect colonies have evolved many 
unique behaviours that are emergent from the coordinated in-
teractions of the individual colony members. This has sug-
gested to many researchers that the colonies as a whole play 
the role of individual organisms made up of simpler organ-
isms: they are super-organisms.

The bees’ dance. 
One behaviour that 
has fascinated natu-
ral scientists is the 
evolution of a com-
plex dance language 
used by worker hon-
eybees on returning 
from the hive to 
communicate the 
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Bees on a comb.

θ

d

A honeybee worker that has found a rewarding food source will con-
duct a waggle dance in a figure-eight (shown in red) when she returns 
to the hive to notify her fellow workers.

While traversing the central strip of the figure-eight she waggles her-
self. The length of this section of the dance is proportional to the dis-
tance to the food source. The angle with respect to the vertical of this 
phase of the dance indicates the angle of the food source with respect 
to the sun when leaving the beehive.

θ
dis
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ce 
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distance and direction of a food supply. Each dancer vies for 
the attention of her fellow workers, dancing more or less vig-
ourously depending on the quality of the food source she has 
located. The orientation of her dance with respect to the verti-
cal as she dances on a comb, relates the direction of the food 
source with respect to the current position of the sun. The 
number of “waggles” she executes in each repetition of the 
dance conveys the distance or amount of energy that must be 
consumed to reach the source. The net result is that the hive 
as a whole is a very efficient foraging entity, even when food is 
distributed widely.

The ants’ trail. Ants are at an advantage over bees when in-
dicating the path to food to their fellow workers: they are re-
stricted to walk along solid surfaces. Rather than developing a 
complex dance language, they have therefore evolved a sim-
pler system for designating a pheromone path between a 
food source and their nest. As each worker returns home bear-

ing food, it deposits a scent trail along the soil, leaves, twigs or 
kitchen benches it crosses. The more workers that return 
along a path bearing food, the more strongly the path’s scent 
will be reinforced, and the more attractive it becomes to unoc-
cupied ants who join the busy foragers. As the food source be-
comes depleted, ants start to return to the nest empty-handed 
and therefore without reinforcing the pheromone trail. The 
scent naturally decays over time, dissipating into the atmos-
phere until it ceases to exist and ants are no longer recruited 
to visit the former food site. Some consequences of this 
method of path indication are that:

• Ants will choose the shortest of two paths of unequal length 
if the paths are presented simultaneously.

• After ants have chosen a path they are unable to switch to a 
new path, even if the new path is shorter.

•Ants will all choose one path in preference to half of them 
travelling a second path, even if 
the paths are of equal length.

The termite’s nest. The social 
insects are capable of collabora-
tively building astonishing archi-
tecture: complex nests with 
many chambers of different sizes 
and applications. Beehives, wasp 
and ant nests will be familiar to 
most people, but perhaps less fa-
miliar are the mounds built by 
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Termite mounds dot the grasslands near Tennant Creek, Northern Territory, Australia. © Robert & Sara 
Dorin, 2009. Used with permission.



some species of termite, especially in northern Australia and 
on the African savannah. These can be several meters high 
and house literally millions of termites. In some species the 
mounds are oriented along a north-south axis to assist in ther-
moregulation. Vertical ventilation shafts that open out at the 
top and sides of the mounds are incorporated to assist in the 
movement of air through the structure. The nest, as well as 
having a substantial visible presence in the landscape, extends 
into the subterranean space. Passive climate control is vital 
for the individual termites working in areas where the daily 
temperatures may exceed 45°C (113°F) in the shade, it assists 
the colony to keep its brood alive, and in some species the cli-
mate regulation is also necessary to cultivate a garden of 
fungi.

Swarms and algorithms

The ability of swarms of social insects to “solve” complex prob-
lems collectively, especially when they forage or build their 
homes, has prompted researchers working with computation 
to scrutinise their methods. The hope is sometimes to learn 
about emergent phenomena of relevance to biology, but also 
to be able to apply nature’s techniques to their fields, for in-
stance in search, optimisation, town planning, art and archi-
tecture. This has lead to a computational science-styled ap-
proach to understanding biological swarms:

A swarm is a set of mobile agents which may: communicate 
with one another directly or indirectly; receive stimuli from 

the environment; alter the environment and perform collec-
tive or distributed problem solving.

In biological swarms the agents are usually heterogeneous as 
we have noted. They consist of different castes: queens, 
drones, workers; and possibly sub-castes such as foragers or 
soldiers. Each individual member is dependent on the colony 
as a whole for its survival. Many of the Artificial Life-based 
studies of these swarms focus on the behaviour of the workers 
in the biological colonies for inspiration. Hence, this will be 
the subject of the following sections also. 

A basic requirement for interpreting swarm behaviour algo-
rithmically is to decompose a problem, or structure to be con-
structed, into simple components and their local stopping con-
figurations. One type of agent behaviour proceeds until a local 
stopping configuration is reached, triggering a new kind of be-
haviour in the worker. An action might be performed by an 
agent upon encountering a given environmental configuration 
or upon entering a specific internal state. The choice of action 
might be made deterministically or stochastically depending 
on the model. Different sets of rules can also be applied ac-
cording to an external factor such as time or based on the 
state of an independent model such as one controlling cli-
mate. Entire sets of rules may be applied hierarchically de-
pending on the success or failure of an individual agent’s ac-

tions or on the conditions speci-
fied by the complex model ex-
ternal to the agent.
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How can a swarm build a heap?

It is useful to think about deriving algorithms from social in-
sect behaviour by considering a simple problem. Let’s start 
this puzzle with a lone ant, capable of lifting one grain at a 
time. What intelligence is required for the ant to create a sin-
gle heap of grains from a collection scattered across a plane? A 
seemingly sensible approach is for her to pick a location for 
the heap and move all of the grains to it. That isn’t too difficult 
to imagine. But what if there are many thousands of ants and 
they need to collaborate? The added complication arises to 
communicate the location where each ant wishes to build, and 
the ants also need to agree on which of those is most suitable. 
Without coordination, some ants will be trying to build in one 
location, while others will be carting the grains away again for 
their own heap. An alternative strategy is to appoint a leader 
ant. Perhaps an ant of one caste might manage the heap-
building behaviour of the others. That is certainly possible, 
but keeping in mind the properties of swarms that relate to 
emergent coordination, there is another possibility.

As we saw with the distributed model of flocking behaviour co-
ordination can arise from the interactions of agents that inde-
pendently follow the same set of basic rules in response to 
their local environmental conditions and state. This neatly 
matches the definition of a swarm just given above. Here are 
three heap-building rules for the ants:

• If you find a grain and your jaws are empty, grasp the grain 
and move or turn randomly a little;

• If you find a grain and your jaws are full, drop your grain 
and move or turn randomly a little;

• Otherwise, move or turn randomly a little.

These rules present a simplified model of nest wall construc-
tion in some species of ant. If they are carried out, even by a 
single ant, heaps gradually emerge since grains are being col-
lected at random, but deposited only next to other grains. To 
begin with, small clumps of grain appear in the scattered col-
lection. The larger these become, the greater the chance an 
ant carrying a grain will encounter them. Thus, the greater the 
clump size, the more rapidly it grows with respect to smaller 
clumps. This positive-feedback system eventually “runs 
away”, resulting in a single large heap’s dominance. Which 
fledgling heap will become dominant? The winner emerges 
randomly from the interactions of the grains and ants. The sys-
tem has an attractor – a state to which it reliably converges – 
that consists of a single heap, but this is never really static. 
Ants keep bumping into the heap, picking up grains, walking 
around randomly and dropping them again. Nevertheless, 
these rules allow a collection of ants to create a heap, without 
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Representations of three stages in the growth of a heap using the ant 
behavioural rules specified in the text. 



a leader performing centralised coordination and without any 
explicitly encoded form of agreement.

Sequential and stigmergic behaviour

In practice, the behaviours we find in nature are more stochas-
tic than the rules just explored - not even an ant is a com-
pletely deterministic automaton. But in some cases insects do 
approach their day-to-day tasks very mechanically. Solitary fe-
male wasps of some species (e.g. the Australian spider-wasp) 
will, in the following reliable order: mate, locate a suitable site 
for a nest, build on (or clear out) that site, hunt for prey, sting 

and paralyse it, drag it back 
to the door of the newly fash-
ioned nest, enter the nest to 
check it is clear, drag the prey 
into the nest, lay an egg on 
the body and seal up the nest 
from outside. Sequential be-
haviours like these are hard-
coded into the repertoire of 
the insect. The local environ-
ment acts as a trigger for the 
insect to inform it that it is 
time to change its internal 
state from (trying to) execute 
one action to the next.

The hypothetical heap-
building algorithm we ex-

plored in the previous sub-section is so restrictive as to dis-
guise whether or not it is sequential, since once an ant had col-
lected a grain of sand it was prohibited by its capabilities from 
collecting another. Apart from sequential algorithms, what 
else could an ant be following? An alternative is a stigmergic 
process, a term introduced in the 1950s by French biologist 
Pierre-Paul Grassé in reference to termite behaviour.

Stigmergy refers to behaviours, especially in insects, where 
the work performed on the environment up to a decision point 
informs the next action to be performed. Rather than operat-
ing from a fixed internal sequence, the state of the environ-
ment at any time as generated by previous building behaviour, 
will trigger insects to perform their next action. In this way it 
becomes possible for multiple workers to coordinate their ac-

tivities since one worker 
may set up the environ-
mental conditions from 
which any other can pro-
ceed. If instead each worker 
was following its own fixed 
internal sequence, such co-
ordination becomes impos-
sible. Under individual se-
quential control, each 
worker would have to step 
through its list, ignoring or 
destroying the work of its 
fellow colony members, in 

Paper wasps’ nest New South Wales, 
Australia. Paper wasps are social 
and live in small colonies of between 
12 and 20 individuals. The adults 
feed on nectar and make their nests 
by mixing saliva and wood fibre to 
produce a paper-like building mate-
rial.
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This solitary wasp has paralysed 
its prey and placed it beside the 
burrow. After it drags the grass-
hopper into the burrow and lays 
an egg in its twitching body, the 
wasp will block up the burrow en-
trance from outside with the gum-
nut (a seedpod from a eucalyptus 
tree). Photograph © Mani Shres-
tha 2014. Used with permission.



order to bring the environment into the state its individual 
“current step” demanded.

Simulating wasp nest construction

Deneubourg, Theraulaz and Beckers implemented a simple 
simulation to test the kinds of nests that would be constructed 

by solitary wasps, or social wasps in groups 
of different sizes, following stigmeric and se-
quential algorithms. In their model, each 
wasp moves randomly across a lattice nest 
site in discrete time-steps. Each lattice cell is 
either full or empty of building material that 
is suspended from overhead so that the re-
sulting nest hangs as if from a tree branch. In 
the stigmergic algorithm implemented, only 
the local configuration of a wasp is used to 

decide whether or not it 
will fill a lattice cell with 
building material. The ac-
tion it chooses is based 
upon whether or not its cur-
rent grid location is neigh-
boured by one or two filled 
cells to its side, or a single 
filled cell above. In each of 
these cases a specified prob-
ability determines whether 
or not a new cell will be 
filled by the wasp.

The sequential algorithm the simulation implements has a 
wasp’s current action influenced only by its past behaviour. 
The environmental configuration does not dictate current be-
haviour but it does act to permit or prevent certain behaviours 
– otherwise the wasp might unrealistically place building ma-
terial in midair. At any time a wasp is either in horizontal or 
vertical filling mode. A probability is specified for transition 
between these modes after a successful building action is exe-
cuted.

With a solitary virtual wasp executing the stigmergic algo-
rithm, the researchers found the nests built on the lattice were 
generally short and simple. With 10 wasps following the algo-
rithm, the patterns produced were slightly deeper, but also 
had multiple sub-trees sprouting along their length (much like 
the Paper wasps’ nest shown in the photograph above). The 
sequential algorithm generated short nests with a solitary 
wasp, and long narrow nests with very short branches when 
10 wasps enacted it.

Although these are very simple experiments, they offer as yet 
unrealised potential for constructing architecture from the bot-
tom up. This is how human cities might grow in the absence of 
an overarching plan governed by town planning and enforce-
ment of high-level constraints. Cities that grow organically are 
found today in the slums of many countries and such free-
form organisation is typical too of many medieval European 
towns. Perhaps it might also be the way of the future?
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Two sample nest structures gener-
ated by simulated wasps employing 
a sequential algorithm and two sam-
ples generated using a stigmeric algo-
rithm with wasp groups of size 10. 
(Figures after Deneubourg et al. 
1992)
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CHAPTER 7

Ecosystems

An ecosystem is a set of organisms, their 
abiotic habitat, and the interactions 

between all of these elements including 
exchanges of information, energy and 

matter. Ecosystems are intrinsically 
dynamic. This makes them wonderful 

systems to explore computationally, the 
subject of this chapter.  



TOPICS

1. The ecosystem concept

2. Daisyworld and homeostasis

3. The Lotka-Volterra equations

4. Individual-based models (IBMs)

5. Predator/prey individual-based model

SECTION 1

Ecosystem models
The ecosystem concept

From the perspective of an Artificial Life researcher, ecosys-
tems are rich sources of emergent behaviours for investiga-
tion. The properties of individual organisms can only really be 
understood by reference to the dynamics under which their 
species has evolved. For instance predation strategies (pack 
hunting, chasing, trapping, ambushing) and predation avoid-
ance approaches (camouflage, toxicity, running) are most of-
ten useful between species. Aggregate and social behaviours 
such as flocking, schooling, nest construction, communication 
and pack-hunting, develop within a species as coordination 
strategies for managing tasks such as predator evasion, forag-
ing, or brood rearing.

The need for a concept, the ecosystem, 
that unites invisible processes with tan-
gible flora, fauna and abiotic entities is 
relatively recent. The development of 
the term ecosystem is therefore well 
documented and provides a useful refer-
ence to convey how the field of ecology 
has arisen. In addition, before discuss-
ing ecosystem techniques, it helps to 
know what is being modelled!

The German naturalist and artist Ernst 
Haeckel (1834 – 1919) coined the term 
“ecology” in 1866 to give form to the 
study of Natural History in the context 
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Ecosystem is perhaps most clearly understood as an abstract concept. 
From this perspective, it is not something you can trip over as you wan-
der around experiencing nature. Not only does it include plants, ani-
mals, earth, air and water, it includes the processes of material and en-
ergy exchange between all of the biological and non-biological entities 
in a region. 

Image from Ernst 
Haeckel’s Kunstfor-
men der Natur (1904), 
plate 26: Trachomedu-
sae. Image in the pub-
lic domain.



of Darwin’s and Wallace’s recently published ideas that organ-
isms must struggle for survival. Ecology was to be the study of 

animals, their relationships 
amongst themselves, with 
plants and with the inorganic 
environment that affected their 
survival and reproduction. 
Sixty years later South African 
ecologist John Phillips, champi-
oning the view of another ecolo-
gist, Frederic Clements, in-

sisted that a collection of plants and animals that had come 
into a harmonic relationship with one another and their habi-
tat through succession to climax could be seen quite literally 
as a Complex Organism. Phillips viewed the process of succes-
sion as a kind of ontogeny, a process of development, for his 
own pet concept, Biotic Communities. His aim was, in part, to 
unify Botany and Zoology under a new banner.

The English ecologist Sir Arthur George Tansley, unhappy 
with Phillips’ argument, chimed into the debate and coun-
tered the use of Complex Organism by coining the word “eco-
system” in his retort, The Use and Abuse of Vegetation Con-
cepts and Terms (1935). Several alternatives to ecosystem 
have been offered – biogeocenosis, microcosm, epimorph, ele-
mentary landscape, microlandscape, biosystem, holocoen, bio-
chora, ecotope, geocenosis, facies, epifacies, diatope and bioe-
cos – each with a slightly different slant. However in the UK, 
Europe, Australia, the USA and many other research commu-

nities, Tansley’s term and its designated focus have stuck. 
This is true not only in science but also in politics, philosophy 
and even in marketing and popular culture.

Tansley’s aim for the term was to give expression to a physical 
system that could legitimately take its place alongside those 
studied by Physics. Its components were animals, plants and 
abiotic material. He called attention to the significance of the 
exchange of materials and energy between organisms and the 
abiotic environment.

The preference for ecosystem by U.S. biologists Eugene and 
Howard Odum in the editions of their popular textbook Fun-
damentals of Ecology played a significant role in the term's 
post-war success. Eugene in particular refined his definition 
for the term across the three editions of his book. In the third 
(1971) he wrote,

Any unit that includes all of the organisms... in a given area 
interacting with the physical environment so that a flow of 
energy leads to clearly defined trophic structure, biotic diver-
sity, and material cycles (i.e. exchange of materials between 
living and non-living parts) within the system is an ecologi-
cal system or ecosystem.

With this text the Odum brothers arguably established the 
first generation of ecologists focussed on understanding the 
importance of the relationships between the Earth's biotic and 
abiotic components and the processes by which they exchange 
materials and energy. In particular, they drew attention to the 
emergence of:
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It is worth noting that Tansley 
was not concerned with 
Systems Theory, a field that 
came to the fore only after 
WWII. However his term’s 
natural fit to this mould may 
be a part of the reason why 
the idea gathered popularity 
in the post-war years. 



Trophic structure – a hierarchy of interactions generated by 
organisms filling particular roles in food chains and webs.

Biotic diversity – a variety of different species, exhibiting a va-
riety of behaviours and interactions with one another and 
their environment co-existing in a region.

Material cycles – the ongoing recycling of basic materials such 
as Nitrogen and Carbon through organisms and the abiotic en-
vironment.

Among the most interesting aspects about ecosystems from 
the perspective of Artificial Life studies, are their ability to 
self-organise in space and time and their ability to give rise to 
complex emergent behaviours at the level of individual organ-
isms and groups of organisms.

To an extent, these properties are due to the behavioural flexi-
bility or adaptiveness of individuals. But it is evolution that 
has created this adaptability, and evolution that has been the 
primary source of the emergent properties of ecosystems 
through its action on species. Hence, we are left with a trio of 
drivers for the dynamics of ecosystems: energy exchange, mat-
ter cycles and evolution.

We will explore evolution later. In the remainder of this sec-
tion we will explore ecosystems from the perspective of the in-
teractions that give rise to trophic levels. These encompass en-
ergy exchange and material cycles. Models of the emergence 
of trophic levels, species interactions and diversity are valu-
able for making predictions about how our world will change 

in response to human activities. This allows us to plan our agri-
culture and manage natural resources. But ecosystem models 
are also valuable for the insight they provide generally in ex-
plaining why the natural world is the way it is.

Daisyworld and homeostasis

The interaction between biota 
and the abiotic environment is 
one of the key factors moulding 
ecosystems. To take a simple ex-
ample, the absence of water on 
some regions of the Earth’s sur-
face limits the kinds of organ-
ism that can survive there. 
These 

conditions give rise to different de-
sert ecosystems. Organisms in the 
intertidal zones of the tropics how-
ever, have to contend with high sa-
linity and regular inundation by sea 
water. The result has been the emer-
gence of mangrove forests. The ani-
mals of the desert must all but elimi-
nate the loss of water and salt from 
their tissues, while the animals of 
the mangroves must exclude excess 
moisture and salt. Both types of ani-
mal are homeostatic – to survive 
they must preserve the state of their 
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growth rate of daisies un-
der different local tem-
peratures. No growth oc-
curs outside the range of 
5-40°C. Growth is para-
bolic between the limits.
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daisy, the higher its albedo, the 
more incident energy it re-
flects.



bodies within carefully controlled ranges – but they must do 
so under different adverse conditions.

In 1974, English environmentalist and scientist James Love-
lock, and American biologist Lynn Margulis, published a pa-
per suggesting that the entire biosphere was homeostatic; that 
the organisms on Earth maintained this homeostasis,  ensur-
ing conditions here remained suitable for life. This proposal, 
dubbed the Gaia hypothesis, later gave rise to a simulation 
model of how such a thing was possible.

Lovelock and Watson’s model, Daisyworld, proposes an imagi-
nary planet vastly simplified from the complexity of the Earth. 
On the planet grow two species of daisy of different colour. 
One daisy species is dark and absorbs more light than bare 
earth (it has a low solar reflectance; low albedo). The other 
species is lightly coloured and reflects more light than bare 
ground (it has a high albedo). The rate of growth of the daisies 
depends on their local temperature. This, in turn, is modified 
by the daisies via their albedo. The presence of dark daisies 
tends to increase the temperature of the entire planet over 
what it would be if its surface was bare. The reverse is true for 
the light flowers which reflect a lot of incident energy from the 
planet back out into space. Thus, the local temperature of a 
particular daisy is a function of the local albedo in its immedi-
ate vicinity, and the overall temperature of the planet.

The coupling between the rates of growth and death of daisies, 
the degree to which the populations of the two colours reflect 
energy or absorb it from the neighbouring star, the planet’s 

surface temperature, and local temperature conditions for 
each daisy, form multiple interconnected feedback loops with 
interesting properties.
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The lower graph shows the effect on the planetary temperature of 
increasing solar luminosity. Note that from a value of 0.7 to just be-
low 1.6 units, the temperature of the planet is remarkably stable, 
even dipping slightly.

The upper graphs reveal the mechanism driving this homeostasis. 
Initially the population of dark daisies shoots up to warm the 
planet. As solar luminosity increases, the population of black dai-
sies is no longer viable. They make their own environment too hot 
and are replaced in increasing numbers by white daisies. Eventu-
ally, even the white daisies find the planet too hot to maintain 
within a livable range and the surface temperature rises as we 
would expect in the absence of any daisies.

Graph redrawn from Watson, A.J., Lovelock, J.E., Biological homeo-
stasis of the global environment: the parable of Daisyworld, Tellus, 
Vol. 35B, No. 4, 1983, pp. 284-289
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The changes in abundance of the light and dark daisies are 
driven at a local level by the flowers themselves. If a region be-
comes too warm for daisies, white flowers have the upper 
hand since they assist to reduce the local temperature, and the 
planetary temperature with it, to within the bounds where 
they can grow. If many white flowers appear and begin to cool 
the local area too drastically, black flowers start to get the up-
per hand as locally they will do better by absorbing more of 
the incident radiation and warming the vicinity. Eventually a 
steady-state is reached.

What is potentially even more interesting than these adjust-
ments to steady-state, is the emergence of planetary stability, 
even as the solar radiation on the planet increases! Lovelock 
and Watson subjected Daisyworld to an increasing amount of 
solar radiation. They found that the plants were able to main-
tain the planetary conditions very well – the system was ho-
meostatic with respect to temperature. Without any daisies 
the planet’s temperature would (of course) be expected to rise 
proportionally to the rise in solar luminosity.

While Daisyworld is insufficiently detailed to draw too many 
conclusions about earth’s biosphere, for our purposes it high-
lights the extent to which the biotic and abiotic elements of an 
ecosystem may interact. Organisms are more than capable of 
changing their local environments in many and subtle ways. 
Their interactions with physical processes can be exceedingly 
complex and have unexpected consequences. We should keep 
this in mind, even when we consider a system as simple as two 
interacting species.

The Lotka-Volterra equations

The Lotka-Volterra equations 
model the population dynam-
ics (the rate of change of 
population size) of two spe-
cies. A predatory species (per-
haps a dingo) that eats a prey 
species (perhaps kangaroos). 
The equations as discussed 
here were developed inde-
pendently in the early 20th 
century by Alfred Lotka and 

Vito Volterra. This simple two-species food-chain is an early 
biological system for which mathematical models were at-
tempted. The equations are quite simple and worth under-
standing in detail.

dx
dt

= x(α−βy)
dy
dt

= − y(γ−δx)

x - prey population size
y - predator population size
t - time
α - growth rate of the prey
β - rate at which predators consume prey
γ - death rate of predators
δ - rate at which predators increase by consuming prey
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Dingo: a free-roaming Australian 
dog. Image © Jarrod Amoore 
2009, Sydney, Australia. Licensed 
for use under Creative Commons 
Attribution 2.0 Generic.



The rate of change of the prey population is represented by 
dx/dt. The rate of change of the predator population is given 
by dy/dt.

The expressions that represent the populations of the two spe-
cies at any time are coupled differential equations. Each de-
scribes the rate of change of one population as a function of 
the current population of the other.

Hence the preys’ population size x, increases proportionally to 
its current size times the growth rate α, but is reduced by an 
amount given by x times the number of predators y, multi-
plied by the rate at which predators consume prey β. Likewise, 
the expression for the predators’ population size y, decreases 
due to its natural death rate γ, but increases by an amount 
computed as the rate at which predators multiply by consum-
ing prey δ, and the number of available prey x. Overall, the 
coupling between the x’s and y’s in the equations reflects the 
mutual dependence of one species on the other.

For some values of the parameters, constant values of the 
populations may occur indefinitely. Perhaps more interest-
ingly, as the graph provided indicates, for other values of the 
parameters, coupled cyclic oscillations occur. In a real biologi-
cal scenario the patterns generated by the model could only 
appear if, no matter how large the prey population gets, there 
is always enough food to support them. Of course in practice 
the population size of prey is capped by the carrying capacity 
of their environment. In this simple model such things are not 
considered. Also absent from the model is any enforcement of 

minimum viable populations. The equations do not take ac-
count of this. Lastly, the model doesn’t take into account any 
change over evolutionary time periods, for instance an arms 
race between a predator’s ability to catch prey and the prey’s 
ability to evade.

All the same, the simple model and Daisyworld are illustrative 
of the general principles of modelling ecosystems using mathe-
matical and computational techniques. These are a very power-
ful paradigms.

Some limitations of equation-based models

The Lotka-Volterra equations give figures for the population 
size of the species of predator and prey over time. These are 

This graph shows the cyclic changes in population size of the 
predator and prey populations over time that result from α=0.04, 
β=0.04, γ=0.4, δ=0.2. The graph highlights the dependence of 
one population on the other.

Predator
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The population of 
prey rises while 
predators are scarce.

The rise in prey 
facilitates a rise in the 
predator population.

Increasing numbers of 
predators, causes a 
prey population crash.

Followed by a crash 
in the predator 
population.

115



numerical, aggregate properties of a species. To include grass 
in the model, a food source for the kangaroos, a new equation 
must be added to specify the relationship between the amount 
of grass at any time and the kangaroo population size it can 
support. The rate at which grass increases (its growth) and de-
creases (its consumption by kangaroos) must be represented. 
This adds to the complexity of the set of equations that need 
to be solved to understand the dynamic properties of the 
model and to use it for prediction. The more equations, the 
more difficult the system is to solve. In some cases there 
might not even be a feasible way to understand the system ana-
lytically.

An additional aspect of working with aggregate properties in 
ecosystem models is that differences between individual preda-
tors and prey are not easily accounted for. For instance, all 
kangaroos are treated alike by the Lotka Volterra equations, 
as are all dingoes. Depending on the research questions of in-
terest and the kinds of ecological phenomena under investiga-
tion, this may be inappropriate. For instance, many ecosystem 
phenomena are influenced by the spatial organisation of popu-
lations. Simple aggregate models treating all entities as spa-
tially co-located will fail to represent this. Also, typically in na-
ture there is a range of properties within a species. For in-
stance some dingoes are better hunters than others; some kan-
garoos may evade predators successfully in some environ-
ments, and less well in other areas. Some kangaroos (the very 
young or very old) may just be slower runners than others. If 
these factors are significant for answering a particular re-

search question, simple equation-based models may become 
unwieldy.

Individual-based models

Individual-based models (IBMs) are simulations capable of ac-
counting for differences in behaviour, physiology and local 
conditions between organisms in an ecosystem by incorporat-
ing individual-level detail. These models are also known as 
agent-based models (ABMs) because each individual repre-
sented in the system is assumed to have the ability to act inde-
pendently, based on its own properties, life history and local 
environment – i.e. each individual is an agent. A distributed 
model of flocking is an example of an individual-based model 
of bird behaviour. In this section we will explore a spatially ex-
plicit individual-based model derived from the predator/prey 
relationship explored through the Lotka-Volterra equations.

How do individual-based models surmount difficul-
ties of equation-based models?

Individual-based models include data-structures that repre-
sent relevant organisms individually. For example, a simula-
tion of bee/flower interactions might include representations 
of each and every bee in a hive and each and every flower in a 
foraging patch. Each flower would conceivably have proper-
ties that include its location in space (space is often modelled 
explicitly), colour, size and scent. Each bee might store a 
unique memory of which flowers it has visited in the past, 
which of those had contained nectar, their colours and loca-
tions. Agent-bees could have physiological traits modelled too 
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so that individuals had a current position in the modelled 
space, and a velocity, current nectar load and maximum capac-
ity.

The purpose of such models is to set up a virtual ecosystem 
with all the relevant organisms represented, including behav-
ioural rules that will govern how they make decisions on a 
moment-by-moment basis. The rules are akin to those ex-
plored in the distributed flocking model.

Once the initial conditions and rules are set up, the system is 
left to run itself! The researcher then examines the system’s 
behaviour to determine how closely it matches known data. 
The model might be revised multiple times before it correctly 
represents the empirical evidence in the desired way and to 
the desired level of accuracy.

After validation, experiments may be conducted using a simu-
lation by varying parameters and procedures. The results can 
be analysed as they would be in any regular field experiment. 
The advantage simulations hold over field experiments is their 
flexibility. What if the flowers were 
bigger? What if the bees were 
faster? What if it started to rain? 
How would the system behave if the 
density of flowers was halved? 
These kinds of questions can be an-
swered relatively easily in simula-
tion, even if equivalent real-world 
experiments would be impractical 
or well-nigh impossible to conduct.

A predator/prey individual-
based model

In this section we will describe one 
way to build an individual-based 
model that extends the simulation 
of dingoes and kangaroos just de-
scribed by the basic Lotka-Volterra 
system.

Space. A common way to model 
space in individual-based ecosys-
tem models is as a rectangle. It is 
also possible to imagine a torus 
(doughnut) world. This may seem 
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Here is a visual representation of a spatially explicit individual-based 
model of the interaction between flowering plant species. In this 
model, flowering plants consume resources from their environment 
and provide new ones that potentially allow new species to survive 
where they otherwise might not. Upon reaching maturity, each flower 
(asexually) reproduces by randomly scattering seeds in its vicinity. If 
they happen to land in a suitable location and all resources they need 
to survive are present, they in turn bloom. Otherwise they decay. 
(Constellation (2009), generative electronic-media art installation.) A torus world can be gen-

erated from a rectangular 
sheet by curling the left 
side of the sheet around to 
the right side to make a 
tube. (The red line in the 
figure shows the junc-
tion.) And then the top 
side is curled around to 
meet the bottom side so 
that the tube becomes a 
torus. (The blue line 
shows the junction of the 
tube ends.)

Even though this world is 
conceptually a torus, it is 
usually just visualised as a 
rectangle on which a crea-
ture moving off the top 
edge “miraculously” ap-
pears back in the world at 
the bottom, and vice 
versa. Likewise for the left 
and right edges.



strange but it is useful since a creature roaming the surface of 
a torus encounters no boundaries and therefore the world 
does not introduce edge effects into the simulation. For in-
stance, on a torus a kangaroo cannot be 
trapped against an artificial world edge by a 
dingo. Unless we specifically wanted to 
model hard boundaries, a torus is probably 
best for our application.

The space may be continuous, allowing 
agents to occupy any floating point (x, y) coordinate. In our 
case we will use a grid-based space tiled with square cells. 
Each cell is given an integer Cartesian coordinate identifier. At 
any time during a simulation run, each cell may contain either 
dirt or grass, and possibly a kangaroo and a dingo too.

Next we design classes of object to represent entities in the 
simulation space. These will have a number of parameters to 
be updated in discrete time-steps as a simulation proceeds. In-
dividual agents will undergo addition (+) to the simulation, 
transformation (~) within it, and removal (-) from the simula-
tion as described for each class of entity below.

Grass. (+) In our simulation, (green) grass will grow in 
patches, one grass patch per grid cell. Hence each grass patch 
will require an (x,y) grid location. All new grass agents are cre-
ated at the start of a simulation.

(~) A grass plant in a cell has a single state. It is either eaten 
or edible. An eaten grass plant will return to the edible state 
with a fixed probability in every time step.

(-) A grass agent is removed from the simulation when a kan-
garoo occupies its grid cell and eats it leaving only (brown) 
dirt.

Kangaroos. (+) New (grey) kangaroo agents appear in the 
simulation if an existing kangaroo agent gives birth to them. A 
kangaroo gives birth to a new one with a particular probability 
in every time step.

(~) Kangaroos are mobile agents. They require a grid-cell posi-
tion that may be updated every time-step as they move, ran-
domly in this simple model, from one grid cell to a neighbour-
ing cell. Every time step they are alive, a kangaroo consumes a 
unit of its energy. A variable is needed to store each kanga-
roo’s current energy store. A kangaroo in a grid cell occupied 
by grass will eat the grass and gain a unit of energy in its store. 

(-) When a kangaroo runs out of energy, it is removed from 
the simulation due to starvation. When a kangaroo occupies 
the same grid cell as a dingo, the kangaroo is removed from 
the simulation due to predation.

Dingos. (+) New (red) dingos appear in the simulation when 
living dingoes give birth to them. A dingo gives birth to a new 
one with a particular probability in every time step.

(~) Dingos are mobile agents. They require a grid-cell position 
that may be updated every time-step as they move, randomly 
in this simple model, from one grid cell to a neighbouring cell. 
Every time step they are alive, a dingo consumes a unit of its 
energy. A variable is needed to store each dingo’s current en-
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ergy store. A dingo in a grid cell occupied by a kangaroo will 
eat it and gain a unit of energy in its store.

(-) When a dingo runs out of energy, it is removed from the 
simulation due to starvation.

Running the simulation  
[Try the interactive widget online]

Now the simulation is run and the results are analysed, firstly 
to verify that the software is running as it should, then to vali-
date the behaviour of the model against empirical data and ex-
pert opinion. And then, with luck, to explore the dynamics of 
the ecosystem under conditions where empirical data is un-
available.

During a run, the simulation state is updated incrementally. 
Every time-step, the agents are updated one at a time in a ran-
dom order. Random ordering of the agent update is one way 
to avoid granting some agents a consistent head-start. Each 
active agent examines its local environment, for instance a 
kangaroo must check for grass in its cell. If grass is present it 
may decide to eat it. The eaten grass agent would then have its 
state set to eaten.

Every dingo checks for the presence of a kangaroo in its grid 
cell. If none are present, one dingo might decide to move. It 
selects a random cell in its neighbourhood and executes the 
action to move there. Another dingo might test its reproduc-
tion condition and generate a new dingo in the simulation. A 

different dingo may have no energy reserves. It will die of star-
vation and be removed from the simulation.

As the simulation unfolds, data about its performance can be 
examined, or collected for later analysis. In this case, since we 
are interested in extending the system modelled by the Lotka-
Volterra equations, it makes sense to plot the population size 
over time as we did before. It is often helpful to provide inter-
active control over the parameters of the simulation such as 
the probability of grass regrowing and the birth rates for the 
kangaroos and dingos. Experimentation with these values as 
the simulation runs can provide a good feel for the dynamics 
of a system: How sensitive is it to various parameters? What 
parameter values generate stable systems? Which parameter 
ranges cause oscillations in system dynamics? Which cause a 
crash?

Each agent updates itself once every time-step. It usually 
begins by looking in its environment. Based on what it sees 
and its internal state, it then makes a decision about what 
to do. Lastly, it attempts to execute the action.

Decision

Perception Action

Kangaroo: Can I see grass?
Dingo: Can I see a kangaroo?

Eat, Move, Reproduce, Die

Internal model
knowledge

informs

?
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SECTION 2

Evolution
Evolution by natural selection

Throughout history, at least as far back as the ancient philoso-
pher and poet Empedocles (c. 492–432 BCE), it has been re-
peatedly suggested that humans were derived from ancestors 
in an evolutionary chain. Many attempts have been made to 
explain how and why this might have happened, and to pre-
sent evidence in support or counter to the claim. Until the 
19th century no satisfactory mechanism to explain the evolu-
tionary process had been documented.

In 1859, Charles Darwin and Alfred Russel Wallace published 
their theories of evolution by natural selection and the world 
has never been the same since. The importance of their work 
to science, and culture generally, can hardly be over-
estimated. Why? Because the theory of evolution by natural 
selection proposes a concrete mechanism for the production 
of the immense diversity found in nature. It explains the distri-
butions of species we find now, and the lineages recorded in 
the fossil record. It explains many of the interactions between 
organisms within and between species. It explains their de-
gree of specialisation in morphology, much about their behav-
iour, and their adaptedness to different environments. The 
theory does not invoke supernatural beings or events, it relies 
on basic physical principles. The theory can be used to make 
predictions, and its implications can be tested.
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Charles Darwin looks 
thoughtfully out into space at 
the Natural History Museum, 
London.

Portrait (detail) of Alfred 
Russel Wallace by J.W. 
Beaufort, 1923. British 
Museum, London.



Evolution by natural selection has a few conditions required 
for it to become established. It requires that:

• There are differences between individuals of a species.

• Many of the differences between individuals in a species are 
inherited by offspring from their parents.

• Some of the differences enhance survival and increase the 
number of offspring an individual successfully produces.

• Differences in survival and numbers of offspring between in-
dividuals with different traits will result in variation in the 
numbers of descendants bearing their parents’ traits.

...consequently, variations that allow an organism to be more 
successful at producing offspring will tend to accumulate in 
the population. Variations that lower reproductive success will 
tend to be eliminated from a population.

While the theory can be quite simply stated, its consequences 
are far-reaching and not at all easy to understand. After a hun-
dred and fifty years the implications of evolution in different 
contexts are still being thrashed out by many thousands of sci-
entists on a daily basis. Just to be clear: it is not disputed 
within science that evolution occurs and that it has shaped 
life. But the effects of the evolutionary process are not always 
easy to understand and the future implications of the process 
can be difficult to predict.

The following sections explore evolution with the aim of un-
derstanding its implementation using computers, an idea that 

appears to have begun in 1954 with the work of Nils Barricelli 
in the USA. In this text, our interests relate specifically to digi-
tal evolution and Artificial Life. The technique has been used 
more widely for engineering and optimisation problems also, 
but these areas won’t be of direct concern to us here.

In order to reach the point where the principles of digital evo-
lution will be easy to follow, it is first useful to explain the con-
cept of the fitness landscape. After that a concrete example of 
digital evolution will be presented.

The fitness landscape

At one level, evolution can be understood as a search or opti-
misation algorithm. When applied to a “problem” (e.g. sur-
vival in a particular environment), this algorithm can make in-
cremental improvements to existing poor “solutions” (e.g. or-
ganism morphology, physiology and behaviour) to seek out 
currently undiscovered superior solutions. The quality of a so-
lution is referred to as its fitness. Higher fitness implies 
greater reproductive success.

Fitness can be thought of as a score that a solution achieves 
when tested in a particular environment. For example, a quick 
rabbit will evade more foxes than a slow one. The faster rabbit 
is therefore likely to foster more children that inherit its leg 
speed than the slow rabbit; provided both live in an environ-
ment where foxes pose a threat. A spider with a sticky web 
may catch more insects than its neighbour whose web is not 
sticky. The sticky-webbed spider is therefore more likely to be 
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better nourished and able to produce more offspring that in-
herit its sticky-web trait than its neighbour.

Of course in nature nothing is so simple! A fast rabbit might 
also be bright pink and its slow friend may be well camou-
flaged. The sticky-webbed spider might be tasty to birds and 
its neighbour might be foul. Many traits of an individual de-
cide its overall fitness in a particular environment. This, as 
well as the existence of countless different, dynamic environ-
ments, is part of the reason why there is such a diversity of life 
on earth.

Imagine a single trait that influences the fitness of a species in 
a particular environment, in a complex way. For instance the 
size of an organism will influence its maximum acceleration 
and deceleration in a chase, the amount of energy it can store 
over winter, the amount of nutrition it needs to survive, the 
rate at which it cools down and heats up, its success in a fight, 

its ability to fly and its attractiveness to mates. All of these fac-
tors have the potential to influence reproductive success. If we 
plot on a graph the fitness of (potential) members of the spe-
cies exhibiting a range of values for the trait, we generate what 
is known as a fitness landscape.

For evolution to work successfully, it must be possible to incre-
mentally improve the fitness of the members of a population 
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This is a sketch of an imaginary fitness landscape. Different values of 
the trait, as might occur in a population of organisms, generate 
troughs and peaks of fitness giving the appearance of a landscape 
across the space of possible organisms. The small arrows indicate the 
desired path of a population’s maximum fitness: rising from an initial 
low value corresponding to a poor choice of trait, over a local opti-
mum and trough, and onto the global optimum which represents indi-
viduals with the best choice of trait given the circumstances.

The idea of generating a fitness landscape showing the fitness result-
ing from all possible combinations of genes harks back to a 1932 pa-
per by American geneticist Sewall Wright. His landscape was set out 
as a 2.5D topographical contour map in gene space.

Global optimum
the best solution

(in the circumstances)

Local 
optimum

Fitness

Trait (e.g. organism size)

Local 
optimum

A fitness vs. time plot for an imaginary evolutionary process within 
a stable environment. At generation 40, one or more members of 
the population are born that exhibit the optimal value of the trait(s) 
depicted in the fitness landscape.

We have found a 
solution here!

Population 
normalised 

mean
fitness

1.0

40

Fitness landscape

The perfect solution is 
found at generation 40.

Time (generations)



by edging slightly up the mountains and skipping over the 
troughs of the fitness landscape. In a landscape that resem-
bles a single spike in the middle of a vast plain, the required 
gradual climb to the peak is unavailable. There will also be no 
smoothly inclined path in a random jagged fitness landscape. 
The evolutionary process doesn’t work properly under either 
of these conditions. It is important to keep this fact in mind, 
especially when evolutionary processes are being used in soft-
ware. 

Aesthetic selection

This section describes how the evolutionary process can work 
in software to generate visual forms that are manually se-
lected by a user and automatically bred by the computer. One 
way to conceptualise the visual art-making process is to con-
sider an abstract space containing all possible images – an infi-
nite library of all potential works of visual art. From this un-
usual perspective, the artist’s job is to search the infinite li-
brary for a desirable picture. Like any fitness landscape, the 
space of possible images contains areas of low and high fit-
ness. The fuzzy boundaries of these regions will be dictated by 
personal taste. How might such a truly vast space be searched 
within the lifetime of an individual artist?

Evolutionary software can be used to assist humans to “find” 
visual art, architecture and industrial designs from a space 
that is so huge it is beyond the capability of humans to even 
imagine. The aim of the approach is to allow artists and de-
signers to do what they are good at (assessing interesting, rele-
vant or beautiful designs and features) and to use computers 
for what they are good at (crunching vast arrays of numbers, 
generating complexity and novelty).
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An outline of the artificial evolution of shapes using purely aesthetic 
criteria for fitness. The process begins with the random initialisation 
of a population of forms from which the user manually selects those 
that are, for whatever reason, preferred. These are used as parents to 
breed a new population – just like breeding pigeons, apples or roses, 
only the computer does the form-mating, not biology.
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Multiple 
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The principle was demonstrated neatly by zoologist Richard 
Dawkins in his interactive software, the Blind Watchmaker 
(1986). Use of the software begins with the computer present-
ing to the user a grid with a small population of automatically 
generated computer-drawn stick figures. These are effectively 
a tiny sample from the infinite library of possible stick figures 
the code can generate. The user visually assesses the members 
of this population, assigning them a subjective fitness judged 
purely on aesthetic merit. For instance on how insect-like, 
tree-like, face-like, ugly or intricate the line drawings appear 
to the user. The user then selects with a mouse-click the most 
desirable form.  

From here, the computer removes the existing population 
from the screen and generates a new population of the same 
size. This population is composed entirely of the offspring 
from the selected parent. The new population will, in general, 
more closely meet the preferences of the user than did the pre-
vious generation since the offspring inherit, with some varia-
tion, the traits of the preferred parent. This evaluation–selec-
tion–reproduction sequence continues over many “genera-
tions” until the user has bred a visual design to their taste. 
That is, they have “found” a suitable design within the range 
of possibilities that the software is able to generate.

Dawkins’ software implements the processes of:

• Generating variation in a population.

• Reproduction with inheritance of the selected individuals.

The evaluation of fitness for individuals in the population is 
left up to the human user’s imagination. Likewise, fitness-
based selection of individuals from the population is per-
formed by the human user manually selecting a satisfactory 
form from each new population.

With some modification and variation this process has been 
widely used to make what is loosely referred to as “evolution-
ary art”. It is possible to apply the technique to a wide variety 

of design tasks where hu-
man preferences are the best 
gauge of fitness. This is often 
the case for visual art and de-
sign, music composition and 
other subjective ventures. 
When the aim of the exercise 
is to derive a virtual crea-
ture’s locomotory strategy or 
build a complete virtual eco-
system with evolving spe-
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A population of structures bred over very few generations with 
Dawkins’ Blind Watchmaker (1986). Dawkins created stick-figures 
that resembled trees, fish, insects, even characters from the English 
alphabet.

It is possible to breed 3D forms us-
ing aesthetic selection acting on vir-
tual models. These forms were 
bred using the author’s Bauhaus 
software, 1994-5.



cies, manual interference is often undesirable and usually 
quite impractical. To eliminate the need for a human in the 
loop the computer requires an explicit means to measure the 
fitness of members of a population.

Genotypes, phenotypes and fitness functions

On earth, every cell includes a DNA molecule that, within the 
right environment, acts in accordance with natural chemical 
and physical laws to generate an organism. The organism may 
be only that single cell with a very simple behavioural reper-
toire, or it may be a multicellular primate capable of science, 
philosophy, art and writing ebooks. The DNA in all these cases 
is referred to as the genotype for the organism. The organism 
and its behaviour constitute a phenotype.

The genotype of a phenotype is passed down to offspring dur-
ing reproduction. Through this medium offspring inherit phe-
notypic traits such as the mor-
phological, physiological and be-
havioural characteristics of 
their parents. Natural or human 
selection then acts on the pheno-
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As can be seen from this strange flying fish, a digital 
genotype can encode just about anything!

1 3 4 4 1 6 2 7

Number of heads.

Number of body segments.

Colour of body segments.

Number of tails.

Radius of body segments. Width of tails.

Number of wings.

Length of wings.
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British artist William Latham has been aesthetically evolving vir-
tual sculptures and computer animations since the 1980s. His soft-
ware Mutator was written with  Stephen Todd. Image © William 
Latham 1992. Used with permission.



typic traits, governing which phenotypes can pass on geno-
types to offspring.

To implement the evolutionary process in software a genotype 
must be coded. This can be as simple as an array of bits, an ap-
proach used in Genetic Algorithms. These are a type of evolu-
tionary algorithm promoted 
by American complex adap-
tive systems researcher John 
Holland. A single or multi-
dimensional set of integer or 
floating point numbers also 
makes a suitable genotype. 
These values could code for 
the presence or absence of 
phenotypic traits, or as line 
lengths, positions and orienta-
tions in a phenotype that is a 

stick-figure drawing. The numbers might be parameters for 
the control of the limbs of a virtual creature being evolved to 
walk, or they could specify environmental conditions under 
which a creature attempts a high-level behaviour such as flee-
ing, eating or mating.

An alternative genotype structure is a tree. This idea has been 
promoted by the computer scientist John Koza and forms a 
part of Genetic Programming, another sub-field of the gen-
eral area known as Evolutionary Computation. Tree geno-
types can encode phenotypes that are mathematical expres-
sions, complete computer programs, or algorithms for con-
structing phenotypes that are virtual organisms with hierarchi-
cal body-plans. Cyclic graphs can also be suitable genotypes 
for some problems.

Once a genotype and its mapping to a phenotype have been de-
vised, an explicit fitness function must be written. This func-
tion scores each phenotype in a population so that the more 
closely it meets the desired goal, the higher its fitness. A suit-
able fitness function might be the distance a virtual creature 
stumbles from its starting position in a fixed time. Fitness 
functions might measure the efficiency of engines, or their top 
speeds, or they might measure a balance of power, reliability 
and efficiency. Fitness functions must permit the explicit 
measurement and comparison of a variety of phenotypes. The 
more finely they are able to distinguish between phenotypes 
with different capabilities, the more successful they are likely 
to be in defining a smooth fitness landscape.

Could you write a controller to 
dynamically balance these crea-
tures on their feet? Could you ex-
tend it so that these creatures can 
walk, run, hop and jump over ob-
stacles? Evolutionary processes 
can do (and have done) exactly 
that! Image © Ben Porter 2009. 
Used with permission. 
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Textures generated by aesthetic selection of virtual ecosystems of 
drawing agents using EvoEco. © Kowaliw, Dorin, McCormack, 2011.



Automated evolutionary computation

Now that the basic concepts of the fitness landscape, geno-
type, phenotype relationship and fitness function have been 
explained, it is possible to detail the evolutionary algorithm.

The algorithm cycles clockwise around the loop illustrated 
here, beginning with initialisation of the population.

1. Initialisation. This is the creation of the first population 
of individual phenotypes. The initialisation of a population of 
phenotypes is typically carried out by randomly creating the 
sequences of numbers that represent the genotypes from 
which they are derived. Although suitable population sizes 
vary depending on the problem to be solved by the algorithm, 
from 50 to 200 individuals is common where an explicit fit-
ness function will be applied.

Once the genotypes have been randomly created, phenotypes 
are built from these in a problem-specific way. For example 
the numbers might be used to specify a 3D model of a creature 
and a controller for its walk cycle.

2. Fitness evaluation. The next step is to test the pheno-
types and measure their fitness. One approach is to choose 
pairs of phenotypes and play them off against one another in a 
game. Another approach is to let each phenotype do its own 
thing unencumbered for awhile, for example to see how far it 
walks. The fitness function takes the performance of each phe-
notype and turns it into a number. If any phenotype gets a per-
fect score (for any real problem this is unlikely in the first gen-
eration) then the algorithm 
can stop here – the problem 
has been solved! Otherwise, 
the fitness scores are used 
for the next phase of the algo-
rithm.

3. Parent selection. For 
evolution to work, the pheno-
types with the highest fitness 
must be most likely to repro-
duce. The probability a phe-
notype will be chosen as a 
parent is sometimes com-
puted using a “roulette 
wheel”. The fraction of the 
wheel a phenotype occupies 
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is governed by its fitness relative to the total fitness of the 
whole population. Other approaches are also used in different 
situations.

4. Reproduction (crossover and mutation). Once par-
ents have been selected the mechanism of crossover is used to 
take a fraction of the genotype from each to copy into the off-
spring’s genotype. Crossover shuffles or recombines the exist-
ing genes in a population among offspring.

Gene copying is inexact, and very occasionally, a random mu-
tation occurs. Consequently, mutation is a process that may 
introduce completely new gene values to a population.

5. Survivor selection. For each generation of the evolution-
ary loop a replacement rule decides which members of the ex-
isting population will be replaced by new offspring. In some 
cases the entire population is destroyed and replaced with 
new offspring after every generation. It is also possible to pick 
members of a population for removal by repeatedly selecting 
one at random and comparing its fitness against that of a 
newly generated phenotype. The fitter of the two is granted a 
space in the new population. The overall population size is 
usually kept constant.

The evolution loop is executed for multiple generations and, if 
everything runs to plan, the mean fitness of the population 
gradually increases until a perfect (or workable) solution is 
identified by the fitness function. The number of generations 
needed before a solution is found depends on many things. 
For instance it depends on the difficulty of the problem, how 
well the genotype was devised, the population size, the pa-
rameters for crossover and mutation and the ability of the fit-
ness function to distinguish phenotypes. Trial and error helps 
to get things working. An evolutionary run that cycles through 
a few hundred generations is not unusual. By monitoring a fit-
ness versus time graph it is possible to see if further genera-
tions are likely to lead to a solution, or if the fitness is failing 
to improve and a new run or some further re-jigging is neces-
sary before starting afresh.

In the figure, two parent solutions are mated together. 
The operations that occur to produce a child are crossover (recombi-
nation) and mutation. Crossover requires one or more locations 
within the genotype to be selected randomly. The location of these 
crossover points determines which genes from each parent are 
spliced together to appear in their offspring. Occasionally, mutation 
randomly varies one of the child’s genes or discards it and generates a 
new one from scratch.

1 12 2
two parents’ genes and their matching 

crossover points 1 & 2

offspring’s genes

mutated offspring’s genes

crossover (recombination)

mutation
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Artificial life and automatic evolution

One spectacularly successful application of evolutionary com-
putation with explicit fitness functions was devised by Ameri-
can researcher and artist Karl Sims. His Blocky Creatures are 
made entirely, as their name suggests, of rigid blocks of differ-
ent dimensions. Some creatures are built of only a few blocks, 
others are more complex and include several articulated com-
ponents, often in repeated segments. The blocks of a creature 
are linked at joints. During a simulation in which creatures 
are placed into a virtual physical environment, the forces at 
the joints are controlled by a program that is evolved simulta-

neously with the body. The program and creature morphology 
both have genotypes with recursive graph structures. In this 
way their evolution runs in parallel and every body segment 
has the opportunity to evolve along with its own controller. A 
central processing component for coordinated control of body 
segments can evolve also.

Each creature’s blocks can be equipped with sensors for detect-
ing joint angles, contact, or the direction to a light source. The 
data from these sensors is processed by the evolved control 
program which is a graph of many interconnected nodes. The 
output of this network can apply forces across the joints of the 
creature’s body blocks to move it about in response to its 
sensed environment.

By using explicit fitness functions, Sims evolved creatures ca-
pable of stumbling, rolling or walking across a simulated 
plain. He evolved swimming creatures, and creatures that 
jump into the air. Some creatures evolve to follow light 
sources. Using a co-evolutionary approach where two crea-
tures were played off against one another for fitness, he was 
able to evolve morphologies and behaviours for games in 
which the virtual players competed for possession of a puck. 
The life-likeness of these abstract creatures makes them a 
landmark in digital evolutionary artificial life.

Further reading

Darwin, C. (1859), "On the Origin of Species by Means of Natu-
ral Selection, or the Preservation of Favoured Races in the 
Struggle for Life"

A figure showing one of Sims’ simpler creatures, and the corre-
sponding “neural” structure that controls its behaviour via the 
application of forces to each of its joints. After Sims 1994.
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TOPICS

1. PolyWorld

2. Tierra

SECTION 3

Evolving ecosystems
Evolution generates and drives ecosystems. If we want to un-
derstand long-term ecosystem behaviour through simula-
tions, we mustn’t omit the evolutionary process. Not only is 
evolution essential in addressing questions of relevance to 
ecology, evolutionary computation can also play a role as a 
search algorithm. As a search algorithm it can assist us to find 
model parameters that create a match between virtual behav-
iour and data gathered from the real world. In this section 
though, we will focus on the former application. We will dis-
cuss a few evolving virtual ecosystems in detail to see how 
they work and how they can be used as research tools. Of 
great interest (not only to this author) is the potential for 
these systems to generate complexity of organism morphology 
and behaviour. It seems like nature is capable of evolving 
greater and greater complexity, however problematic it might 
be to measure this. But so far, our digital evolutionary proc-
esses have failed to live up to expectations. Why might this 
be? Could artificial ecosystems ever overcome the limitations 
built in to standard evolutionary algorithms in this regard?

PolyWorld

While working at Apple Computer in the early 1990s, Larry 
Yaeger developed PolyWorld, a virtual ecosystem that incorpo-
rated evolving agents with neural network brains. His aim was 
to build a system complex enough to be used for studying in-
teractions of species in real ecosystems. PolyWorld wasn’t the 
first virtual ecosystem model, but it incorporates many inter-
esting features and so serves here to outline construction prin-
ciples and the significant potential of the idea.
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An evolving ecosystem, Listening Sky, of puff-ball agents roams a vir-
tual globe searching for mates and playing musical patterns. Agents 
prefer mates that have bodies in their favourite colours and that sound 
pleasing to their personal musical tastes. A human controls a "listener" 
that hovers above the globe, eaves-dropping on the local populations 
of agents, exploring the dynamic soundscape that evolves.

Listening Sky, interactive VR, generative software installation. A col-
laboration between Rodney Berry, Wasinee Rungsarityotin and Alan 
Dorin. ATR, Kyoto, Japan, 2001.



Space. PolyWorld is a tabletop that may be set up as a torus, 
or with dangerous edges over which its inhabitants tumble to 
their deaths. The space may contain internal barriers de-
signed to restrict mixing between creatures in different areas, 
or possibly to act as cover for prey and predators.

Behaviour. The agents in PolyWorld appear as coloured poly-
gons roaming the tabletop. During the simulation, at any 
stage they may execute the following behaviours determined 
by the output of their neural network brains.

Eat – Replenish energy resources. Condition: agent's location 
overlaps food and its eat behaviour is triggered.

Control field of view – Control the horizontal cone of vision.

Change colour brightness – Control the brightness of poly-
gons on its front.

Mate – Reproduce. Condition: agent's location overlaps an-
other's and both organisms' mating behaviours are triggered. 
This is visually represented on an agent’s body as blue coloura-
tion.

Move – Step forward an amount.

Turn – Turn an amount.

Fight – Attack another organism. Condition: agents overlap 
and one agent’s fighting behaviour is activated. This is visually 
represented on the agent’s body as red colouration.

Energy and matter. 
Agents metabolise energy 
for all activity, including 
thought and while sitting 
still. Energy is acquired by 
executing the eat behav-
iour near food. Food is 
visualised as green poly-
gons scattered around the 
tabletop for which agents 
may search. This grass-
like stuff grows freely at a 
rate and energy value that 
may be controlled by the 
programmer. Its location 

Larry Yaeger’s PolyWorld. Image © Larry Yaeger 1992.  
Used with permission.
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An agent looks out into its environ-
ment. The inputs to its cognitive sys-
tem are represented as a 1D array of 
coloured pixels extracted from its 
cone of vision.
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is determined stochastically.

Dead organisms also offer energy to those who would eat 
them. An agent dies when its health energy reaches zero, but a 
dead organism may still have a non-zero food energy value. 
This makes predation a possibility within PolyWorld. It is im-
portant to note that although agents have a size and this ef-
fects fight outcomes and other activities, when they eat one an-
other, matter/mass is not exchanged.

Sensation. PolyWorld agents see their local surroundings as 
a one-dimensional array of coloured pixels spanning the hori-
zon in front of them. They may control the arc that their visual 
system subtends so as to be able to focus attention or take in a 
wide vista. The colours their visual system detects are fed into 
their neural network brains, along with a value representing 
their current health (so as to be able to know if they are being 
attacked for instance) and a random value. This latter parame-
ter helps to promote generalisation in the neural network as 
well acting as a source of noise like that encountered by any 
real sensor.

Thought. PolyWorld agents are controlled by neural net-
works that process the inputs of the sensory system and con-
vert them into instructions to execute behaviours. Each out-
put of the neural network corresponds to one of the agent’s ba-
sic behaviours. In some cases if an output neuron fires, the 
agent attempts to execute the corresponding behaviour (e.g. 
eating, mating). In some cases, the strength of the firing out-

put indicates the degree to which a behaviour is executed (e.g. 
the distance moved or turned).

Agent neural states are updated synchronously. Each agent 
employs a learning algorithm to adjust its configuration after 
every time step. In this way agent responses are not fixed for 
their lifetime. PolyWorld creatures are capable of learning as-
sociations between what they perceive, what they do, and the 
state of their environment.

Genes and sex. PolyWorld agents each have a set of 8-bit 
genes. A number of these determine physiological traits which 
then influence agent behaviour. For example a gene encodes 
creature size and also effects its metabolic rate, fighting capa-
bility and the maximum amount of energy it can store. Other 
physiological genes include strength, maximum speed, life 
span and the fraction of energy that will be donated to off-

spring. Some genes also code for repro-
ductive parameters specifying the muta-
tion rate and the number of crossover 
points used.

Each agent’s artificial neural network 
brain is also constructed according to 
values available for evolution. Genes 
specify the numbers of neurons de-

voted to red, blue and green vision components; the number 
of internal neural groups and their composition of inhibitor 
and exciter neurons. Parameters for connections between neu-
rons and the learning algorithm are also encoded in genes.

134

Is it love, lust or fate 
that drives PolyWorld 
agents together?



As with any digital evolutionary problem worth solving, when 
PolyWorld starts with a population of randomly generated 
genotypes and derives phenotypes from them, the creatures 
won’t be very successful. After all, they are going to be driven 
by untrained un-evolved artificial neural networks! They 
won’t eat when they are hungry, they won’t move when they 
are attacked, they may instead try to mate when they encoun-
ter a patch of grass, or they may do nothing at all.

To bootstrap PolyWorld, Yaeger implemented a genetic algo-
rithm mode in which the fitness of agents is measured at pre-
determined times according to a predetermined fitness func-
tion. The fittest organisms are selected and mated together us-
ing a standard evolutionary algorithm. During the generations 
of this period, it doesn’t matter if the parents are adjacent, nor 
even if they “want” to mate. Once the agents are able to man-
age to sustain themselves independently and find mates on 
their own, PolyWorld enters free running mode. Then every-
body selects mates and reproduces under their neural net-
works’ control. In this mode agents wishing to mate must both 
fire their “mate” output (rape is not possible here) and they 
can donate a gene-determined fraction of their energy to off-
spring to help get them going.

PolyWorld ecology. The reason for implementing Poly-
World in the first place was to see if interesting agent “spe-
cies” and behaviours would emerge within this virtual ecosys-
tem. Since a suite of basic behaviours was hardcoded to begin 
with, it wasn’t so much a question of whether or not the ability 
to walk or change colour might appear, but perhaps the hard-

coded behaviours could be coupled together by evolution in 
agents. They might then practice higher level composite behav-
iours that were not hard-coded, or even expected.

Yaeger reported the emergence of several types of agent. The 
simplest he dubbed “frenetic joggers” for their tendency to 
run straight ahead at full speed (in a torus world since other-
wise they would have fallen off the world edge). These agents 
always wanted to mate therefore any others of their kind that 
they encountered offered reproductive opportunities. Simi-
larly, the agents’ eat neurons were always firing so any food 
they passed was a potential source of nourishment. A variant 
of these creatures, the “edge runners” travelled around a 
bounded world with a similar approach to finding mates and 
energy. The “indolent cannibals”, occupied virtual cities. 
These were sedentary communities where everybody mated 
with their neighbours and ate them when they died.

Interesting couplings between hard-coded behaviours also 
emerged. For example, some creatures sped up in response to 
visual stimuli, some ran away when attacked or actively 
fought back. Some creatures slowed down to graze when they 
encountered food or even sought it out and circled it. Some 
agents were even seen to have developed the ability to follow 
others.

Summary. PolyWorld is an agent-based ecosystem model in-
corporating models of several significant features of real biol-
ogy, especially with regard to learning and evolution. While it 
doesn’t realise the complexity of natural ecosystems, nor does 
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it seem to show the open-ended expansion of complexity ap-
parent in biological evolution, PolyWorld suggested the possi-
bilities that virtual ecosystems might hold for research into 
real ecosystem dynamics.

A number of potentially vital aspects of real ecosystems are 
missing if PolyWorld is to exhibit the apparent open-
endedness of biological evolution, we will explore some of 
these in detail later. One feature that might be worth examin-
ing is the possibility for PolyWorld organisms to live on and 
within one another’s bodies. Even if this was the only extra fea-
ture implemented, it would enhance the opportunities for 
parasites and symbionts to evolve. In the system described 
next, PolyWorld-like predation cannot appear, yet symbiosis 
and parasitism are easily evolved.

Tierra

To understand the dynamics of evolutionary processes and 
species’ interactions, a literal model of biological ecosystems 
is not strictly necessary. The ecologist Tom Ray adopted an ab-
stract computational view of virtual ecosystems when he devel-
oped Tierra in the early 1990s.

Tierra does not look like any kind of ecosystem we would find 
in nature, it lacks a ground plane and has no visible creatures 
walking, eating, mating or fighting for instance. But its under-
lying dynamics are based on the evolution of agents compet-
ing for space and resources all the same.

Space, energy and matter. Tierran space is the finite mem-
ory of a virtual machine that can execute virtual assembler 
language programs using its own operating system. The mem-
ory takes the topological form of a 1D array with its ends con-
nected to form a loop of cells.

The instructions in Tierra’s virtual assembler language are 
loosely analogous to matter. Instructions can be written into 
and read from cells in Tierran space, and assembled into work-
ing programs that constitute agents, Tierrans. Agents com-
pete against one another for space in the virtual machine mem-
ory. They use slices of virtual central processing unit (CPU) 
time to execute their instructions via the virtual operating sys-
tem. Hence, Tierra’s CPU time is analogous to energy.

Behaviour. Tierrans are programs built from assembler 
code sequences. Thirty-two different instructions exist in the 
machine language (e.g. MOV, CALL, RET, POP, PUSH, 
COPY); basic instructions that will be familiar to any program-
mer. Addressing is by template. So an instruction to JMP 
(jump) to a location in memory is not specified by a numeric 
address (there are no numeric operands), but instead by a tem-
plate. Under program control execution may jump to the near-
est memory location, in either direction, which matches the 
template.

Each Tierran is allocated exclusive write permission to a block 
of memory. However, it may read or execute any memory cell 
in the virtual machine, even if it contains instructions within 
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the block allocated to another agent. In this way a program 
may use code that is not a part of its own body.

Tierrans are positioned on a circular “slicer” queue controlled 
by the virtual operating system. This governs the timing with 
respect to other agents, and the amount of time, that each pro-
gram can spend executing its instructions on its virtual CPU. 
The amount of CPU time allocated to a Tierran can, if desired, 
be tied to the program’s length. In this way it is possible to fa-
vour different sized programs. For instance, if the slice length 
is kept constant for all Tierrans, the environment naturally fa-
vours Tierrans able to act quickly.

Genes and sex. As already explained, each organism has ex-
clusive write access to its own block of memory into which it 
can place virtual assembler code. The list of these instructions 
appearing in any one block constitutes the genotype of that 
Tierran. Its phenotype is the behaviour that the genotype pro-
duces when it is executed on its virtual machine CPU in its en-
vironment.

A Tierran can request write access to an extra memory block. 
This is achieved with the MAL (memory allocation) instruc-
tion. A parent can then write code into the allocated daughter 
cell to grow or replicate. Replication occurs if the program cop-
ies itself into its daughter cell and executes a DIVIDE instruc-
tion. This separates the daughter from the parent memory 
block so that it gains exclusive write access to itself and will be 
allocated CPU time via the slicer queue like any other Tierran. 

After division, the parent can request the allocation of a new 
daughter cell.

To bootstrap Tierra, Ray filled the memory with a mixed pri-
mordial “soup” of 60,000 instructions. Importantly, he also 
hand-coded a replicating Tierran ancestor. This program lo-
cates templates that mark its beginning and end in memory so 
that it can calculate its own size. It then requests a daughter 
cell of the right size, copies itself into this, and divides from it.

The Tierran replication process is imperfect. Sometimes bits 
are randomly flipped during instruction copying. This has an 
effect analogous to mutation in a standard genetic algorithm. 
Also, Tierran assembler instructions don’t always work as 
planned. For instance, an instruction to flip a bit act on the 
wrong bit, or not do anything at all. Additionally, at some 
specified background rate the operating system randomly flips 
bits in the virtual memory. This is likened by Ray to cosmic ra-
diation introducing permanent and heritable mutations into 
living Tierrans. All of this noise helps to scramble events in 
Tierra so that, as might be imagined, the memory rapidly fills 
with imperfect copies of the ancestral replicator, mutants! 
What happens when the memory starts to fill?

Limits to growth. A “reaper queue” is maintained in Tierra. 
Organisms that reach the head of the queue are culled. Their 
instructions are left as dead matter in the memory but aren’t 
allocated CPU time by the slicer. Newly freed memory is allo-
cated as daughter space for holding new arrivals.
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New Tierrans begin at the tail of the reaper queue. They move 
away from its head when they successfully execute an instruc-
tion (for instance they request a jump to a template and that 
template is found in the memory); and move towards the head 
of the reaper queue when an instruction is unsuccessful. Ac-
tive and successful organisms may prolong their time in 
Tierra a little. But the older a Tierran gets the closer it gets to 
the abattoir.

Tierran ecology. Once things get going in Tierra, a diversity 
of programs appears. This isn’t quite the open-ended complex-
ity increase Ray sought, but it is a interesting nonetheless. Of 
particular interest to Ray was the appearance of various forms 
of parasitism. Tierrans evolve that seize control of the copy 
code of other organisms to copy their own instructions. With-
out the presence of hosts, these parasites are unable to repli-
cate. Although they don’t harm the hosts directly, they cer-
tainly compete for space and CPU time.

Some Tierrans appear that are immune to parasitism, and 
then this immunity is circumvented by newly evolved para-
sites. Hyper-parasites also evolve that subvert a parasite’s en-
ergy to assist them in their own replication. Some Tierrans 
evolve that can only replicate socially. These interactions de-
pend on an aggregation of neighbours (in space) catching and 
passing on one another’s Jump-Template instructions.

It is impossible for Tierra to evolve predator / prey relation-
ships since each agent maintains exclusive access to its mem-
ory cells. Similarly limiting, Ray notes, is the simplicity with 

which new instructions (matter) can be created, transformed 
and destroyed in Tierra. Any instruction can be written like 
any other, without regard to what was in a cell before. Instruc-
tions are not conserved in a way analogous to physical matter. 
Perhaps implementations of Tierra-like systems where these 

issues are accounted for 
would be more likely to result 
in the kinds of behaviour typi-
cal of real ecosystems: in biol-
ogy, metabolisms evolve as a 
direct result of pressure to 
transform real matter to 
build bodies and extract en-
ergy from an organism’s sur-
roundings.

Summary. Tierra is an ele-
gant and interesting ap-
proach to generating 
ecosystem-like behaviour 
within a very abstract environ-
ment. The idea that life might 

be a property identified with computation is, I feel, aestheti-
cally suggested by such software. Others have adopted the 
idea of program-based environments to study similar ques-
tions. For instance, Andrew Pargellis used a system, Amoeba, 
derived from Tierra, to facilitate the spontaneous appearance 
of replicators in a random soup of machine code instructions. 
From this he explored the emergence of non-random 
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Core Wars was developed in the 
1980s by Alexander Dewdney, a 
Canadian mathematician and 
computer scientist. Dewdney’s 
software provides an 
environment in which hand-
written computer programs do 
battle with one another in 
computer memory. Although the 
programs could potentially do 
anything they liked with their 
allocated CPU time, the battle 
between them had each program 
in the linear memory space 
attempting to destroy the others 
by overwriting or altering their 
instructions and attempting to 
repair any damage it sustained.



ecosystem-like dynamics among the evolving replicators and 
their parasites. Unlike Tierra’s looped linear memory array 
(which was adopted from a still earlier system called Core 
Wars), Amoeba employs a 2D grid of virtual CPUs to define 
neighbourhood relations between programs. Amoeba shares 
this feature with Chris Adami and Titus Brown’s Avida sys-
tem, another platform dervived from Tierra. Avida continues 
to support research into evolutionary systems.

Further reading
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ton, Addison-Wesley: 263-298. 

Ray, T. S. (1990). An approach to the synthesis of life. Artifi-
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mussen. Santa Fe, New Mexico, Addison Wesley. X: 371-408. 

Pargellis, A. N. (2001). "Digital Life Behavior in the Amoeba 
World." Artificial Life 7(1): 63-75.

Dewdney, A. K. (1984). In the game called Core War hostile 
programs engage in a battle of bits. Scientific American, 250, 
14–22.

Adami, C. and C. T. Brown (1994). "Evolutionary Learning in 
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Assembler code for a Tierran ancestral replicator
nop1; 010 110 01 0 beginning marker  
nop1; 010 110 01 1 beginning marker  
nop1; 010 110 01 2 beginning marker  
nop1; 010 110 01 3 beginning marker  
zero; 010 110 04 4 put zero in cx  
not0; 010 110 02 5 put 1 in first bit of cx  
shl; 010 110 03 6 shift left cx (cx = 2)  
shl; 010 110 03 7 shift left cx (cx = 4)  
movcd; 010 110 18 8 move cx to dx (dx = 4)  
adrb; 010 110 1c 9 get (backward) address of beginning marker -> ax  
nop0; 010 100 00 10 complement to beginning marker  
nop0; 010 100 00 11 complement to beginning marker  
nop0; 010 100 00 12 complement to beginning marker  
nop0; 010 100 00 13 complement to beginning marker  
sub_ac; 010 110 07 14 subtract cx from ax, result in ax  
movab; 010 110 19 15 move ax to bx, bx = start address of mother  
adrf; 010 110 1d 16 get (forward) address of end marker -> ax  
nop0; 010 100 00 17 complement to end marker  
nop0; 010 100 00 18 complement to end marker  
nop0; 010 100 00 19 complement to end marker  
nop1; 010 100 01 20 complement to end marker  
inc_a; 010 110 08 21 increment ax, to include dummy instruction at end  
sub_ab; 010 110 06 22 subtract bx from ax to get size, result in cx  
nop1; 010 110 01 23 reproduction loop marker  
nop1; 010 110 01 24 reproduction loop marker  
nop0; 010 110 00 25 reproduction loop marker  
nop1; 010 110 01 26 reproduction loop marker  
mal; 010 110 1e 27 allocate space (cx) for daughter, address to ax  
call; 010 110 16 28 call template below (copy procedure)  
nop0; 010 100 00 29 copy procedure complement  
nop0; 010 100 00 30 copy procedure complement  
nop1; 010 100 01 31 copy procedure complement  
nop1; 010 100 01 32 copy procedure complement  
divide; 010 110 1f 33 create independent daughter cell  
jmp; 010 110 14 34 jump to template below (reproduction loop)  
nop0; 010 100 00 35 reproduction loop complement  
nop0; 010 100 00 36 reproduction loop complement  
nop1; 010 100 01 37 reproduction loop complement  
nop0; 010 100 00 38 reproduction loop complement  
ifz; 010 000 05 39 dummy instruction to separate templates  
nop1; 010 110 01 40 copy procedure template  
nop1; 010 110 01 41 copy procedure template  
nop0; 010 110 00 42 copy procedure template  
nop0; 010 110 00 43 copy procedure template  
pushax; 010 110 0c 44 push ax onto stack  
pushbx; 010 110 0d 45 push bx onto stack  
pushcx; 010 110 0e 46 push cx onto stack  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nop1; 010 110 01 47 copy loop template  
nop0; 010 110 00 48 copy loop template  
nop1; 010 110 01 49 copy loop template  
nop0; 010 110 00 50 copy loop template  
movii; 010 110 1a 51 move contents of [bx] to [ax] (copy one instr.) 
dec_c; 010 110 0a 52 decrement cx (size)  
ifz; 010 110 05 53 if cx == 0 perform next instruction, else skip it 
jmp; 010 110 14 54 jump to template below (copy procedure exit) 
nop0; 010 110 00 55 copy procedure exit complement 
nop1; 010 110 01 56 copy procedure exit complement 
nop0; 010 110 00 57 copy procedure exit complement 
nop0; 010 110 00 58 copy procedure exit complement 
inc_a; 010 110 08 59 increment ax (address in daughter to copy to) 
inc_b; 010 110 09 60 increment bx (address in mother to copy from) 
jmp; 010 110 14 61 bidirectional jump to template below (copy loop) 
nop0; 010 100 00 62 copy loop complement  
nop1; 010 100 01 63 copy loop complement  
nop0; 010 100 00 64 copy loop complement  
nop1; 010 100 01 65 copy loop complement  
ifz; 010 000 05 66 this is a dummy instruction to separate templates 
nop1; 010 110 01 67 copy procedure exit template 
nop0; 010 110 00 68 copy procedure exit template 
nop1; 010 110 01 69 copy procedure exit template 
nop1; 010 110 01 70 copy procedure exit template 
popcx; 010 110 12 71 pop cx off stack (size) 
popbx; 010 110 11 72 pop bx off stack (start address of mother) 
popax; 010 110 10 73 pop ax off stack (start address of daughter) 
ret; 010 110 17 74 return from copy procedure 
nop1; 010 100 01 75 end template  
nop1; 010 100 01 76 end template  
nop1; 010 100 01 77 end template  
nop0; 010 100 00 78 end template  
ifz; 010 000 05 79 dummy instruction to separate creature
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TOPICS

1. Meniscus (2003)

2. Constellation (2009)

3. Pandemic (2012)

SECTION 4

Aesthetic ecosystems
Arguably, ecosystems count amongst our most valuable aes-
thetic experiences, providing us with exceedingly dynamic en-
vironments capable of engaging all of our senses. This emer-
gent complexity is something many in Artificial Life strive for, 
it is also a major concern of artists engaged in Artificial Life 
art and generative art. Unsurprisingly given its history, Artifi-
cial Life is as interesting to artists as it is to scientists and phi-
losophers.

Generative Art, and the subset of it concerned specifically 
with Artificial Life, is a practice in which artists establish proc-
esses that act more or less independently to generate, or even 
to be, artworks. Many generative and Artificial Life artists 
write computer software to realise their artistic processes. Pro-
grams offer great flexibility and potential to to meet creative 
aims. They can generate rich, dynamic audio-visual environ-
ments suitable for installation 
in a gallery, museum, or for dis-
play on cinema and virtual-
reality theatre screens. Addi-
tionally, software can easily be 
connected to physical sensors 
that respond to temperature, 
humidity, movement, light and 
sound, or to data gleaned re-
motely via the internet. The di-
versity of potential perturba-
tions to software via sensors 
creates opportunities for inter-
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瘟疫 Plague (2006) 
A virtual ecosystem audio-
visual installation in which or-
ganisms and diseases co-evolve.

Generative Art and its sub-category, Artificial Life Art are dependent on 
the specification by an artist of a dynamic process. This runs with some 
degree of autonomy from the artist and may actually constitute the art-
work. Alternatively, the process may generate an outcome, such as an im-
age, 3D model or text, that is considered the artwork.



active Artificial Life Art, games, data visualisations and ex-
ploratory exhibits. Since the 1960s many artists have experi-

mentally coupled sensors to ro-
bots and other hardware to cre-
ate Cybernetic Art that explores 
situated feedback and autono-
mous control systems. This is 
fascinating and relevant to Artifi-

cial Life, but it falls just outside this book’s focus on software. 
In the next subsections a few evolving ecosystems created by 
the author will be described. Each has its own aesthetic aims 
above and beyond the usual goals of Artificial Life research 
and ecosystem simulation. 
I am not the only person 
to explore this aspect of 
Artificial Life art, but I 
hope the reader doesn’t 
think it too self-indulgent 
of me to want to showcase 
a few of my own works! 
Here they are...

Meniscus

The diversity of organism 
structures and movement 
patterns found in nature 
is astonishing. Each is 
adapted through the evolu-
tionary process to its spe-

cific niche. Can such diversity be realised in software? Menis-
cus is a virtual ecosystem filled with 2D virtual “microorgan-
isms” that attempts this feat. The creatures flutter about in a 
sheet of water sandwiched between two glass plates; in reality 
a wall-mounted screen. The organisms have preferred water 
depths and levels of agitation at which they are most happy to 
search for and select mates. When a suitable couple is made, 
the two parents reproduce using crossover and mutation op-
erations applied to their digital genome. Their offspring tum-
ble to the bottom in an egg that jumps around for a 
genetically-determined amount of time until it is ready to 
hatch. From the egg emerges a 
creature resembling its parents. It 
moves towards its preferred depth 
in search of a mate, clustering 
among others of its kind, or seek-
ing a space of its own depending 
on how comfortable it feels.

Human visitors to the gallery have 
control over the water level in the 
virtual ecosystem via a control 
dial. They may empty the water 
from the tank or fill it. They may 
repeatedly agitate the water by 
spinning the dial vigorously. 
These movements force the crea-
tures into conditions they may 
find favourable or unfavourable 
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Meniscus (2003), an inter-
active Artificial Life art-
work that employs indi-
rect artificial evolution in 
a virtual ecosystem to gen-
erate complex organism 
morphology and move-
ment.

The VIDA Artificial Life art 
competition has been well 
documented and provides 
information on many superb 
examples of Artificial Life art.



depending on their genetically determined preferences. The 
creatures that prefer the conditions generated by the work’s 
visitors come to dominate the population for awhile. But the 
system is dynamic. New visitors bring new conditions, even an 
absence of visitors potentially brings new conditions. The 
scene is never the same twice as new morphologies and crea-
ture movement patterns evolve over the weeks of an exhibi-
tion.

Constellation

Organisms generate and occupy niches within ecosystems. 
Each species acquires resources from its environment, and 
each engineers new niches for other species to occupy by pro-
viding new raw materials, new physico-chemical conditions, 
new habitat and behavioural possibilities to be occupied by 
others. Behavioural niches are frequently explored in virtual 
ecosystems such as PolyWorld and Tierra. Constellation in-
stead represents the construction of new chemical niches. The 
ecosystem is represented as a bed of tiny flowering plants oc-

cupying an initially uniform surface that provides some basic 
resources. A handful of randomly generated seeds is scattered 
and, if the resources are suitable, each grows into a small bun-
dle of leaves before a flower buds. The resources each plant 
needs to survive are determined by its genes. As it extracts re-
sources from its locality, each plant also generates some new 
resources in its vicinity that may be retrieved by other crea-
tures.

The plants reproduce asexually when they reach maturity, scat-
tering seeds sharing the parent genome (with some possible 
mutation) into their neighbourhood. If the seeds find the re-
sources they need, they too flourish and generate new re-
sources locally. Otherwise they die. The result is a dynamic 
patchwork carpet of flowers. Sometimes a plant evolves de-
pendence on a resource that is only provided by another spe-
cies during its lifetime. In cases like this the relationship re-
sults in the death of the dependent plants once their host fails 
due to old age or as part of a cascade of extinctions.

Pandemic

Pandemic is an individual-based virtual ecosystem in which 
organisms are represented as simple geometric structures. 
Each is specified by a digital DNA that codes the organism's 
colour, dimensions and behaviour. Each organism has prefer-
ences for mates of particular colours, sizes and aspect ratios. 
These it seeks out in a planar landscape. If two organisms en-
counter one another and are mutually attracted, they may re-
produce. Their offspring inherits DNA from each of its par-
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Constellation (2009) is an Artificial Life artwork in which a bed of 
flowers evolves over many hours. Each flower species is dependent on 
the environment for resources and in turn generates new resources 
that other species may come to depend on.



ents, and hence a mixture of their visual 
and behavioural characteristics.

The human visitor to the initial utopian 
Pandemic brings with them contaminants 
in the form of coloured clothing. The 
more colourful the garb the worse it will 
be for the virtual organisms since each 
new colour acts as a transmissible disease 
introduced by a video-camera grab of a 
visitor’s clothing. If any virtual agent trav-
erses the portal that links their world to 
the outside, they risk infection. From then 
on, as the organisms wander they may en-
counter another that is infected by a col-
oured disease. Perhaps this is carried by a 
potential mate, perhaps just by an organ-
ism that is passing by. If the colour of the 
disease to which they are exposed 
matches that of the organism, the infec-
tion spreads. Some organisms survive in-
fection and later exhibit immunity when 

re-exposed to the same disease. Others perish. The process 
continues indefinitely as the organisms and diseases co-evolve 
in an ongoing arms race to out-compete one another and as 
new diseases are introduced by human visitors. The result is a 
vibrant and dynamic installation that is never the same on 
two occasions and to which visitors continue to bring new ele-
ments.

Further reading

Dorin, A., (2004). “The Virtual Ecosystem as Generative Elec-
tronic Art”, in Proceedings of 2nd European Workshop on Evo-
lutionary Music and Art, EvoWorkshops 2004, Raidl et al 
(eds), Springer-Verlag, pp. 467-476.

Dorin, A., (2008). “A Survey of Virtual Ecosystems in Genera-
tive Electronic Art”, in The Art of Artificial Evolution, 
Machado & Romero (eds), Springer-Verlag pp. 289-309.
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Any human watch-
i n g P a n d e m i c 
(2012) who steps 
within the marked 
c irc le wi l l have 
their clothing col-
our read and pro-
jected into the vir-
tual world within 
the disc (shown on 
the screened image 
in bright green). 
This acts as the 
point of introduc-
tion of new infec-
tious diseases into 
the virtual world.

Pandémie / Pandemic (2012) is an interactive Artificial Life artwork in 
which human visitors inadvertently introduce new diseases to a virtual 
ecosystem. These infect, harangue, destroy and co-evolve with the vir-
tual creatures.
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SECTION 5

Open-ended evolution
Is natural evolution open-ended?

In a history of 3000 million years, evolution has not run back-
ward.. . . Why is this? Why does evolution not run at random 
hither and thither in time? What is the screw that moves it for-
ward, or at least, what is the ratchet that keeps it from slipping 
back? Is it possible to have such a mechanism which is not 
planned? What is the relation that ties evolution to the arrow of 
time, and makes it a barbed arrow? – Bronowski, 1970.

One hope of Artificial Life researchers using evolving virtual 
ecosystems as tools has been to explore ecological phenomena 
such as population dynamics, speciation, species ranges and 
resilience. Ecologists are using this approach too. But specifi-
cally within the field of Artificial Life, underlying much of the 
interest in ecological simulation is an agenda to realise compu-
tational “open-ended evolution”. Researchers have wondered 
whether software can indefinitely generate new levels of organ-
ism complexity and new adaptive organism components. Bio-
logical evolution seems capable of both.

It appears that, yes, digital evolution can generate new adap-
tive organism components, but these are often not very inter-
esting. They are trivial to generate and trivial to behold. Can 
new and interesting components be generated in software in-
definitely? That is still undecided, partly because interesting-
ness is so hard to define. Likewise, complexity increase, espe-
cially that which in nature appears hierarchically organised, 
has proven to be a tough nut to crack! This section explains 
why, and offers suggestions as to how to improve the situa-
tion.
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Some movement sequences and lineages produced by asexual/sexual 
hybrids in a virtual ecosystem, Meniscus, by the author.



To begin with we must address a concern of evolution theo-
rists, Does natural evolution generate increasing organism 
complexity? Intuitively, it seems that prokaryotes are simpler 
than humans. It is also clear that the latter evolved for the 
first time much more recently than the former. Is it therefore 
true that biological evolution is driving an increase in the com-
plexity of organisms? Or is the 
apparent complexity increase 
over time generated passively?

A measure of organism 
complexity

Before we can even begin to an-
swer this question, we must 
agree on a definition and meas-
ure of organismic complexity. 
And right away our troubles be-
gin since there is no consensus 
on an appropriate measure. 
Should we focus on the number 
of different cell types a species 
has? How do we rigourously dis-
tinguish between cell types any-
way? Maybe instead we should 
be interested in a species’ be-
havioural repertoire? Or mor-
phological complexity? The in-
formation content of its DNA? 

Even if we could agree on the detail of these methods, when 
making fine-grained distinctions between species, different 
measures generate different orderings. Some measures even 
topple humans from the apex of creation, a proposal that 
would once have been considered sacrilegious. Thankfully the 
branching diagrams showing evolutionary relationships, phy-
logenetic trees, are no longer constructed with so much arro-
gance.

What to do? One alternative is to deny the importance of or-
ganism complexity altogether. The apparent increase in com-
plexity of organisms over evolutionary time (if there is such a 
trend and suitable measure to quantify it) could potentially be 
due to random drift in organism “complexity space”. There-
fore there may be no driving force behind complexity increase 
at all. Here is the basic argument.

To start with, at least moderately simple organisms are going 
to appear because they are the most likely to self-assemble. 
When the first self-assembled organisms capable of replica-
tion do reproduce, perhaps some of their offspring will be sim-
pler than their parents, just by chance. Some of these simpler 
creatures may even thrive! How could this be? Consider a spe-
cies about which we know a little, a bird. Perhaps a child man-
ages well without the wings of its parents by foraging on the 
ground, or maybe its existence in a cave allows it to happily 
dispense with the complexity of its parents’ eyes. On the other 
hand, perhaps, by chance mutation, offspring of an organism 
are more complex than their parents. These might survive too. 
Their parents might not be quite as mobile as their children 
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Note the position of capitalised 
MAN at the apex of the tree. 
This of course implies His supe-
riority to all other lifeforms. E. 
Haeckel’s image “Pedigree of 
Man” from, The Evolution of 
Man: A popular exposition of 
the principal points of human 
ontogeny and phyologeny, 
1897, New York: D. Appleton 
and Company (p188, plate XV).



who have a tiny new appendage and can now actively flee 
predators and chase food. Natural variation both up and down 
the complexity scale is conceivable and examples hark back 
even to Darwin and Wallace’s considerations.

As evolution occurs, some offspring will be simpler than their 
parents, some will be more complex. Either might survive to 
continue the evolutionary line. This is possible without any 
particular driving force towards greater complexity. If that is 
all there is to it, then complexity increase of organisms over 
evolutionary time periods is not really very interesting, it just 
happens due to random variation. Of course that might not be 
all there is to it. But it is at least a distinct possibility.

Ecosystem complexity

So much for organism complexity. What can be said of ecosys-
tem complexity? As evolution continues, do ecosystems in-
crease in complexity? Is there a reason to think they should?

As before, we first need a measure of ecosystem complexity. 
Perhaps we could count the number of methods for exchang-
ing matter between species, the different types of material be-
ing exchanged, or the different chemical reactions occurring. 
Or perhaps the number of species dependent on one another, 
or even just the number of species in an ecosystem? These fea-
tures can all (potentially) be measured. Fortunately, the con-
cept of the niche encompasses these phenomena.

Informally, niches are the roles organisms occupy, ‘ways of 
life that lead to the maintenance of species through evolution-

ary time. Niches take ac-
count of the provision of 
resources (inputs) to the 
organisms; and the provi-
sion of resources by the 
occupants of the niche to 
others outside it (outputs 
or impacts). If we can 
identify niches within eco-
systems, and their input/
output relations, we can 
describe them in a di-
rected graph. Measuring 
niche complexity can 
then be achieved by meas-
uring graph complexity.

Admittedly, it is difficult 
to gather the data to gen-
erate these graphs of 
niches, but it is not impos-
sible. And in some cases 

graphs that approximate niche webs have already been pro-
duced. The quantification of graph complexity has been at-
tempted in a few cases using information theoretic measures. 
Without delving into detail, these compute the minimum num-
ber of bits required to describe a network of nodes and edges 
unambiguously. The more bits required, the more complex 
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Some sample foodwebs in which 
nodes represent species and (di-
rected) edges trophic relationships. 
These graphs illustrate a subset of 
the interactions between niches and 
can potentially serve as a proxy in 
niche-web complexity computations.
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the network must be. The question remains, Does evolution 
drive an increase in ecosystem complexity?

Even without detailed measurements, there are some argu-
ments in support of the hypothesis that niche complexity in-
creases exponentially. Each new organism generates the poten-
tial for new niches to be occupied by subsequent species. Each 
new type of body provides new habitat for other species (like 
bacteria in the human gut or fleas on a dog’s back). Each new 
species changes its environment locally and sometimes glob-

ally. For instance, 
consider global oxy-
gen production by 
photo-synthesising 
plants, global CO2 
production by hu-
mans, the behav-
iour of Daisyworld 
and the Gaia hy-
pothesis. These en-
vironmental altera-
tions are per-
formed by ecosys-
tem engineers, spe-
cies that provide 
habitat by chang-
ing the availability 
of resources or by 
altering the forces 

acting on other organisms.

For example, new species’ excretions provide new chemicals, 
their biomass locks up selected materials, changing their avail-
ability to other processes. Every new species opens doors to 
new kinds of interaction, new niches for yet more new species. 
The increase of niche complexity may be an inevitable conse-
quence of evolution generating new species.

An obvious limit applies on the number of species in an ecosys-
tem. This is the carrying capacity of the environment. Some-
times species go extinct too and this might lower the niche 
complexity of a particular ecosystem. But the extinction of a 
species leaves at least its original niche, or a new one intro-
duced by its former existence, so the space is open for new spe-
cies to occupy. Niche complexity leaves the door open for eco-
logical field experiments to test its viability.

Complexity increase in software

How should we assess whether or not a simulation generates 
increasing complexity? There is no agreement here either. But 
at least the digital basis of simulations makes it practical to try 
different measures and see how our code stacks up.

Even trivial simulations can generate new organism types 
since in the virtual world a single gene changing value from 
1.0 to 1.1, as trivial as that is, might conceivably be counted as 
a speciation event. The concept of a virtual species is difficult 
to pin down. Can more interesting developments occur?

Ecosystem engineers are species that provide 
habitat by changing the availability of re-
sources or forces acting on other organisms. 
These are not often modelled in virtual ecosys-
tems — a serious oversight! This Tasmanian 
eucalyptus tree is a significant ecosystem engi-
neer.
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The hope in software such as Tierra and PolyWorld has been 
that behavioural complexity will increase. One way it might do 
so is by hierarchically (or less elegantly, linearly) assembling 
increasingly complex organism behaviours from the basic pos-
sibilities hard-coded at the outset. To some extent, the appear-
ance of the species reported by Ray and Yaeger is evidence of 
increases in complexity. Yaeger and his collaborators have 
also seriously assessed the complexity of PolyWorld agent 
brains over evolutionary time. They analysed these using infor-
mation theoretic measures and have even driven standard ge-
netic algorithms with fitness functions specifically selecting 
for information theoretic complexity of agent neural network 
brains. They evolved complexity in agent brains but this didn’t 
seem to generate equally interesting complexity of agent be-
haviour.

In PolyWorld and Tierra the niches that appear are primarily 
related to the interactions between species and a very simple 
abiotic environment. This simplicity limits the types of niches 
the simulations might support. Agents lack the ability to con-
struct physicochemical niches. One way to overcome this is to 
build agents from the same stuff as their environment using 
artificial chemistry. Then agents may evolve to metabolise abi-
otic elements in different ways; to eat, excrete and generate 
new kinds of molecule for use by themselves and other spe-
cies. For example plants photosynthesise to create sugar, spi-
ders make silk and glue, bees make wax and honey. These new 
materials fundamentally change the “niche-scape” for many, 
many species, not just for their makers.

Another aspect of many Artificial Life ecosystems is the single 
virtual scale at which they operate. For practical reasons it is 
difficult to simultaneously support a simulation running at lev-
els analogous to physics/chemistry, individual organism inter-
actions and the level of multiple ecosystems. But if explosions 
in the number of niches appearing with each new species is de-
sirable this would certainly help. The aim would be to support 
a virtual amoeba metabolising artificial chemical nutrients, 
while living in the gut of a virtual mouse, who lives in a stable 
hole in a tree, and is hunted by a snake. Natural food chains 
often start at the micro-level and proceed upwards in scale, 
and then dramatically turn downwards as decomposers re-
claim even the largest lifeforms for recycling.

Virtual ecosystems are really interesting, partly because we 
still have such a long way to go!

Further reading

Bedau M (2006) The evolution of complexity. In: Symposium 
on the making up of organisms. École normale supérieure.

Bedau MA, Packard NH (1991) “Measurement of evolutionary 
activity, teleology, and life”, In Langton et al (eds) Artificial 
life II. Addison-Wesley, Reading : 431–461

Bronowski, J. (1970). New concepts in the evolution of com-
plexity. Synthese 21, 228–246.
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Korb K.B., Dorin, A., (2011) "Evolution Unbound: Releasing 
the Arrow of Complexity", Biology and Philosophy, Vol. 26: 
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CHAPTER 8

Concluding 
remarks

This is the end of the beginning of your 
work in Artificial Life. If its longevity is 
any indication, I am not alone in believ-
ing this to be the single most interesting 
field of human endeavour; the technologi-
cal re-invention of life itself. I hope you 
have found this introduction helpful and 
I look forward to reading about your own 
experiments, discoveries and insights.



Glossary
Abiota
Non-biological components of a region.

Agar
A gelatinous substance derived from seaweed that is often 
used as a food source on which to grow bacteria in flat, round, 
glass dishes (petri dishes) in the lab.

Agent
A robot or a computer program component situated in a real 
or simulated environment that is capable of autonomously per-
ceiving its local area and responding to it.

Artificial Neural Network (ANN)
A computational model inspired by an animal’s central nerv-
ous system and brain architecture. Typically an ANN consists 
of several layers of nodes (representing neurons) connected to 
one another in a network through which signals travel. The 
network as a whole is capable of machine learning and pattern 
recognition if designed and trained properly.

Autonomous
A robot or software agent is autonomous if it acts according to 
its own rules and therefore exhibits a degree of independence 
from external control.

Balance wheel
A balance wheel is a component of a clock or watch that oper-
ates like a rotary pendulum. It is a weighted wheel with a tor-
sional spring, the balance spring, that causes it to rotate in 
simple harmonic motion.

Biota
The biological entities of a region.

Catalyst
A material whose presence at a reaction site increases the rate 
at which particular reactions occur, without itself undergoing 
any permanent chemical change.

Finite State Machine (FSM)
This is an abstract machine that, at any moment in time, is in 
one of a finite number of alternative states called its “current 
state”. The machine’s current state changes to a new state 
when some prescribed event or condition occurs. A particular 
state machine is defined by its list of possible states, and the 
conditions for making a transition from each of these to the 
next.

Fractal
A geometrical structure with the same statistical properties 
(e.g. jaggedness) at multiple scales.

Moore neighbourhood
The Moore neighbourhood of a cell on a two-dimensional 
square grid/lattice, includes cells immediately above, below, 
left, right and in all diagonal directions. I.e. cells in the direc-
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tions of the cardinal points of the compass: North, East, South 
and West as well as to the North-East, South-East, South-
West and North-West are part of this neighbourhood.

Pheromone
A chemical substance deposited into the environment by an 
animal, especially an insect or a mammal, that causes a 
change in behaviour of another animal. Ants for instance use 
pheromones to mark trails or to label hostile invaders.

Protocell
A chemical concoction that might (potentially) act as a precur-
sor to a biological cell. Protocells are often the goal or studied 
artefact of Artificial Life research in wet chemical laboratories. 
They typically have some kind of self-assembling membrane 
demarcating an inside and outside. Some are even motile and 
interact with one another in surprising ways.

Stack
A software data-structure for storing information that is re-
trieved in a “first in, last out” fashion. Information is added to 
the “top” of the stack by pushing it on. Further information 
continues to be added to the top of the stack by subsequent 
push operations. To retrieve information from the stack, a pop 
instruction is executed that returns the most recent value 
added to the top of the stack and removes it from the data 
structure.

Stochastic
Based on a probability distribution that may be understood 
statistically, but which cannot be predicted precisely.

Turing Machine
A model of a hypothetical computing machine that manipu-
lates symbols inscribed on an infinite tape according to a set 
of predefined rules. The concept was introduced by Alan Tur-
ing in 1936. The conceptual machine uses the rules it is given 
to generate output by processing data that is fed to it as input 
on the tape. In theory, the Turing machine is capable of execut-
ing any algorithm.

Virtual Machine
A software-based implementation of another computing ma-
chine that can run within a real computer and executes a pro-
gram as if it was a physical machine. I.e. the virtual machine is 
a machine that simulates a real machine.

von Neumann neighbourhood
The von Neumann neighbourhood of a cell on a two-
dimensional square grid/lattice, includes cells immediately 
above, below, left or right of it. I.e. cells in the directions of 
the cardinal points of the compass: North, East, South and 
West. Cells that neighbour the current cell along diagonals are 
not part of this neighbourhood.

Voxels
A voxel is a volume-element, a cubic subdivision of a 3D 
model in Cartesian space. Voxels are analogous to the pixels of 
a 2D image.
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