
Single Layer of Abstraction Principle, CS 257 Name:

1. Write a TO paragraph for the following function (which is not at a single layer of abstraction):

def attack_with_dragon(name, color, size):
"""Attacks the target with a dragon of the given name, color, and size."""
dragon = {

"name": name,
"color": color,
"size": size,

}
if dragon["size"] == "large":

print(f"The dragon {dragon['name']} breathes fire on the target\
and burns it to a crisp!")

else:
print(f"The dragon {dragon['name']} breathes fire on the target\

but it doesn't do any damage.")

return dragon

TO attack with a dragon...

2. How could you refactor that function into multiple functions to get it to a single layer of abstraction?



3. Write a TO paragraph for the following function (which is not at a single layer of abstraction):

def get_user_info():
"""Gets the user information for a given username from a database"""

#First login to the database
username = input("Enter your username: ")
password = input("Enter your password: ")
connect_to_database(username, password)

#Then get the information
user_info = get_row_from_database(username)
return user_info

TO get user information from the database...

4. How could you refactor that function into multiple functions to get it to a single layer of abstraction?

Page 2



5. Write a TO paragraph for the following function (which is not at a single layer of abstraction):

def get_strongest_pokemon(types):
"""Gets the strongest Pokemon of the given types."""
pokemon_data = get_pokemon_data()
strongest_pokemon = None
for pokemon in pokemon_data:

if pokemon.types == types:
pokemon.damage = pokemon.attack_power * 2 / pokemon.defense_power
if strongest_pokemon is None or pokemon.damage > strongest_pokemon.damage:
strongest_pokemon = pokemon

return strongest_pokemon

TO get the strongest pokemon of a given type...

6. How could you refactor that function into multiple functions to get it to a single layer of abstraction?

Page 3


